Skip to main content

Evaluation of Strategies for PET Motion Correction - Manifold Learning vs. Deep Learning

  • Conference paper
  • First Online:
Understanding and Interpreting Machine Learning in Medical Image Computing Applications (MLCN 2018, DLF 2018, IMIMIC 2018)

Abstract

Image quality in abdominal PET is degraded by respiratory motion. In this paper we compare existing data-driven gating methods for motion correction which are based on manifold learning, with a proposed method in which a convolutional neural network learns estimated motion fields in an end-to-end manner, and then uses those estimated motion fields to motion correct the PET frames. We find that this proposed network approach is unable to outperform manifold learning methods in the literature, in terms of the image quality of the motion corrected volumes. We investigate possible explanations for this negative result and discuss the benefits of these unsupervised approaches which remain the state of the art.

This work was supported by the Engineering and Physical Sciences Research Council under Grant EP/M009319/1 and by the Wellcome EPSRC Centre for Medical Engineering at Kings College London (WT203148/Z/16/Z).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://keras.io/.

References

  1. Balfour, D.R., et al.: Respiratory motion correction of PET using MR-constrained PET-PET registration. Biomed. Eng. Online 14(1), 85 (2015)

    Article  Google Scholar 

  2. Baumgartner, C.F., et al.: High-resolution dynamic MR imaging of the thorax for respiratory motion correction of PET using groupwise manifold alignment. Med. Image Anal. 18(7), 939–952 (2014)

    Article  Google Scholar 

  3. Ben-Cohen, A., Klang, E., Raskin, S.P., Amitai, M.M., Greenspan, H.: Virtual PET images from CT data using deep convolutional networks: initial results. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 49–57. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_6

    Chapter  Google Scholar 

  4. Chen, C., et al.: Learning to see in the dark. arXiv preprint arXiv:1805.01934 (2018)

  5. Freeman, M.F., Tukey, J.W.: Transformations related to the angular and the square root. Ann. Math. Stat. 21(4), 607–611 (1950)

    Article  MathSciNet  Google Scholar 

  6. Hudson, H.M., Larkin, R.S.: Ordered subsets of projection data. IEEE Trans. Med. Imaging 13(4), 601–609 (1994)

    Article  Google Scholar 

  7. Judenhofer, M.S.: Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat. Med. 14(4), 459–465 (2008)

    Article  Google Scholar 

  8. Li, H., Fan, Y.: Non-rigid image registration using self-supervised fully convolutional networks without training data. arXiv preprint arXiv:1801.04012 (2018)

  9. Miao, S.: A CNN regression approach for real-time 2D/3D registration. IEEE Trans. Med. Imaging 35(5), 1352–1363 (2016)

    Article  Google Scholar 

  10. Remez, T., et al.: Deep convolutional denoising of low-light images (2017). http://arxiv.org/abs/1701.01687

  11. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Shao, Y., et al.: Simultaneous PET and MR imaging. Phys. Med. Biol. 42(10), 1965 (1997)

    Article  Google Scholar 

  13. Thielemans, K., et al.: Device-less gating for PET/CT using PCA. In: IEEE Nuclear Science Symposium Conference Record, pp. 3904–3910 (2011)

    Google Scholar 

  14. Thielemans, K., et al.: Comparison of different methods for data-driven respiratory gating of PET data. In: IEEE Nuclear Science Symposium Conference Record, pp. 3–6 (2013)

    Google Scholar 

  15. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Staring, M., Išgum, I.: End-to-end unsupervised deformable image registration with a convolutional neural network. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 204–212. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_24

    Chapter  Google Scholar 

  16. Xu, J., et al.: 200x low-dose pet reconstruction using deep learning. arXiv preprint arXiv:1712.04119 (2017)

  17. Zhu, B., et al.: Image reconstruction by domain transform manifold learning. Nat. Publ. Group 555(7697), 487–492 (2017)

    Google Scholar 

Download references

Acknowledgments

We would like to thank nVidia for kindly donating the Quadro P6000 GPU used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Clough .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Clough, J.R., Balfour, D.R., Prieto, C., Reader, A.J., Marsden, P.K., King, A.P. (2018). Evaluation of Strategies for PET Motion Correction - Manifold Learning vs. Deep Learning. In: Stoyanov, D., et al. Understanding and Interpreting Machine Learning in Medical Image Computing Applications. MLCN DLF IMIMIC 2018 2018 2018. Lecture Notes in Computer Science(), vol 11038. Springer, Cham. https://doi.org/10.1007/978-3-030-02628-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02628-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02627-1

  • Online ISBN: 978-3-030-02628-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics