Skip to main content

Role of Mushroom Fungi in Decolourization of Industrial Dyes and Degradation of Agrochemicals

  • Chapter
  • First Online:
Biology of Macrofungi

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Mushroom fungi are well known to possess the ability for degradation of diverse agricultural pollutants. These fungi can degrade extremely diverse range of very persistent toxic environmental pollutants and insoluble chemicals such as lignin. They have the ability to tolerate a wide range of environmental conditions such as temperature, pH and moisture levels and even do not require pre-conditioning to a particular pollutant, because their degradative system is induced by nutrient deprivation. The use of fungi either natural inhabitant or externally introduced to degrade the pollutants involves enzymatic mineralization, chelation, biosorption and precipitation. Fungal biomasses have also shown excellent colour removal capabilities. The various biochemical methods which are used for dye degradation include the fungal degradation methods using pure enzymes or biosorption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnihotri NP (1999) Pesticide: safety evaluation and monitoring. All India coordinated Project (AICRP) on Pesticide Residues. Indian Agricultural Research Institute, New Delhi, pp 132–142

    Google Scholar 

  • Ahlawat OP, Gupta P, Raj D, Vijay B (2006) Dye decolorization potential of spent substrates from Agaricus bisporus and Pleurotus sp.- a laboratory study. Mushroom Res 15:75–82

    Google Scholar 

  • Akar ST, Gorgulu A, Kaynak Z, Anilan B, Akar T (2009) Biosorption of reactive Blue 49 dye under batch and continuous mode using a mixed biosorbent of macrofungus Agaricus bisporus and Thuja orientalis cones. Chem Eng J 148(1):26–34

    Article  CAS  Google Scholar 

  • Anastasi A, Parato B, Spina F, Tigini V, Prigione V, Varese GC (2011) Decolourisation and detoxification in the fungal treatment of textile wastewaters from dyeing processes. New Biotechnol 29:38–45

    Article  CAS  Google Scholar 

  • Arica M, Bayramoglu G (2007) Biosorption of Reactive Red 120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajorcaju. J Hazard Mater 149:499–507

    Article  CAS  PubMed  Google Scholar 

  • Arun A, Prevee Raja P, Arthi R, Ananthi M, Sathish Kumar K, Eyini M (2008) Polycyclic aromatic hydrocarbons (PAHs) biodegradation by basidiomycetes fungi, Pseudomonas isolate and their co cultures: comparative in vivo and silico approach. Appl Biochem Biotechnol 151:132–142

    Article  CAS  PubMed  Google Scholar 

  • Awasthi MK, Pandey AK, Bundela PS, Wong JW, Selvam A (2014) Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresour Technol 168:214–221

    Article  CAS  PubMed  Google Scholar 

  • Ayed L, Mahdhi A, Cheref A, Bakhrouf A (2011) Decolorization and degradation of azo dye Methyl Red by an isolated Sphingomonas paucimobilis: biotoxicity and metabolites characterization. Desalination 274:272–277

    Article  CAS  Google Scholar 

  • Babu BR, Parande AK, Raghu S, Kumar TP (2007) Cotton textile processing: waste generation and effluent treatment. J Cotton Sci 11:141–153

    CAS  Google Scholar 

  • Baccar R, Blanquez P, Bouzid J, Feki M, Attiya H, Sarra M (2011) Decolorization of a tannery dye: from fungal screening to bioreactor application. Biochem Eng J 56:184–189

    Article  CAS  Google Scholar 

  • Badawi N, Ronhede S, Olsson S, Kragelund BB, Johnsen AH, Jacobsen OS, Aamand J (2009) Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp. Environ Pollut 57:2806–2812

    Article  CAS  Google Scholar 

  • Barr D, Aust S (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 28:78–87

    Article  Google Scholar 

  • Bending G, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with lignolytic potential. FEMS Microbiol Lett 212:59–63

    Article  CAS  PubMed  Google Scholar 

  • Bhide JV (1996) Microbiological processes for the removal of hexavalent chromium from chromate bearing cooling tower effluent. Biotechnol Lett 18:667–672

    Article  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Brisley CL (1990) Bioremediation of metal-contaminated surface and ground waters. J Geom 8:204–223

    Google Scholar 

  • Bumpus J, Tien M, Wright D, Aust S (1985) Oxidation of persistent environmental pollutants by white rot fungi. Science 228:1434–1436

    Article  CAS  PubMed  Google Scholar 

  • Cano M, Solis M, Solis A, Loera O, HI P, Teutl MMM (2012) Decoloracion de CD2 (cafe directo 2) por enzimas intra-celulares y extra celulares de Trametes versicolor. Interciencia 37:294–298

    Google Scholar 

  • Casara KP, Vecchiato AB, Lourencetti C, Pinto AA, Dores EF (2012) Environmental dynamics of pesticides in the drainage area of the Sao Lourenco River headwaters, Mato Grosso state, Brazil. J Braz Chem Soc 23:1719–1731

    Article  CAS  Google Scholar 

  • Chang JS, Law R, Chang CC (1997) Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Res 31:1651–1658

    Article  CAS  Google Scholar 

  • Chen H, Hopper SL, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151:1433–1441

    Article  CAS  PubMed  Google Scholar 

  • Demir G (2004) Degradation of toluene and benzene by Trametes versioclor. J Environ Biol 25(1):19–25

    CAS  PubMed  Google Scholar 

  • Dos Santos AB, Cervantes FJ, Van Lier JB (2007) Review paper on current technologies for decolourisation of textile waste-waters: perspectives for anaerobic biotechnology. Bioresour Technol 98:2369–2385

    Article  CAS  PubMed  Google Scholar 

  • Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28:83–99

    Article  CAS  Google Scholar 

  • Esposite E, Paulillo SM, Manfio GP (1998) Biodegradation of the herbicide diuron in soil by indigenous actinomycetes. Chemosphere 37:541–548

    Article  Google Scholar 

  • Ferris FG, Beveridge TJ (1989) Metal interaction in microbial biofilms in acidic and neutral pH environments. Appl Environ Microbiol 55:1249–1257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Field JA, De Jong E, Feijoo-Costa G, De Bont JAM (1993) Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol 11:44–48

    Article  CAS  Google Scholar 

  • Finley SD, Broadbelt LJ, Hatzimanikatis V (2010) In Silico Feasibility of Novel Biodegradation Pathways for 1, 2, 4 - Trichlorobenzene. BMC Syst Biol 4(7):4–14

    Google Scholar 

  • Frazar C (2000) The bioremediation and phytoremediation of pesticide contaminated sites, national network of environmental studies (NNEMS) fellow, Washington, DC

    Google Scholar 

  • Fu Y, Viraraghavan T (2000) Removal of a dye from an aqueous solution by fungus Aspergillus niger. Water Qual Res J Can 35:95–111

    CAS  Google Scholar 

  • Fu Y, Viraraghavan T (2002) Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Adv Environ Res 7:239–247

    Article  CAS  Google Scholar 

  • Gomi N, Yoshida S, Matsumoto K, Okudomi M, Konno H, Hisabori T, Sugano Y (2011) Degradation of the synthetic dye amaranth by the fungus Bjerkandera adusta Dec 1: inference of the degradation pathway from an analysis of decolorized products. Biodegradation 22:1239–1245

    Article  CAS  PubMed  Google Scholar 

  • Hamman S (2004) Bioremediation capabilities of white- rot fungi. Biodegradation 52:1–5

    Google Scholar 

  • Han M, Choi H, Song H (2004) Degradation of phenanthrene by Trametes versicolor and its laccase. J Microbiol 42:94–98

    CAS  PubMed  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Steinbüchel A (ed) Biopolymers. Vol 1: Hofrichter M., Steinbuchel A. (eds.) Lignin, Humic Substances and Coal. Wiley- VCH, Weinheim, pp 129–180

    Google Scholar 

  • Hickey W, Fuster D, Lamar R (1994) Transformation of atrazine in soil by Phanerochaete chrysosporium. Soil Biol Biochem 26:1665–1671

    Article  CAS  Google Scholar 

  • Hitivani N, Mecs L (2003) Effects of certain heavy metals, on the growth, dye decolouration and enzyme activity of Lentinula edodes. Ectoxicol Environ Safety 55(2):199–203

    Article  CAS  Google Scholar 

  • Jackson M, Houl L, Banerjee H, Sridhar R, Dutta S (1999) Disappearance of 2, 4-dinitrotoulene and 2-amino, 4, 4-dinitrotoulene by Phanerochaete chrysosporium under non-lignolytic conditions. Bull Environ Contam Toxicol 62:390–396

    Article  CAS  PubMed  Google Scholar 

  • Jin XC, Liu GQ, Xu ZH, Tao WY (2007) Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Appl Microbiol Biotechnol 74:239–243

    Article  CAS  PubMed  Google Scholar 

  • Kapoor A, Viraraghavan T (1995) Fungal biosorption- an alternative treatment option for heavy metal bearing waters: a review. Bioresour Technol 53:195–206

    CAS  Google Scholar 

  • Kaushik P, Malik A (2009) Fungal dye decolorization: recent advances and future potential. Environ Int 35:127–141

    Article  CAS  PubMed  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic combustion: the microbial degradation of lignin. Ann Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  • Kookana RS, Baskaran S, Naidu R (1998) Pesticide fate and behavior in Australian soils in relation to contamination and management of soil and water: a review. Aust J Soil Res 36:715–764

    Article  CAS  Google Scholar 

  • Kulshreshtha S, Mathur N, Bhatnagar P (2014) Mushroom as a product and their role in mycoremediation. AMB Express 4:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuo W, Regan R (1998) Aerobic carbamate bioremediation aided by compost residuals from the mushroom industry, laboratory studies. Compost Sci Util 6:19–29

    Article  Google Scholar 

  • Lang W, Sirisansaneeyakul S, Ngiwsara L, Mendes S, Martins LO, Okuyama M, Kimura A (2013) Characterization of a new oxygen-insensitive azo reductase from Brevibacillus laterosporus TISTR1911: toward dye decolorization using a packed-bed metal affinity reactor. Bioresour Technol 150:298

    Article  CAS  PubMed  Google Scholar 

  • Lau KL, Tsang YY, Chiu SW (2003) Use of spent mushroom compost to bioremediate PAH- contaminated samples. Chemosphere 52:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2014) Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater. Bioresour Technol 168:142–150

    Article  CAS  PubMed  Google Scholar 

  • Majeau JA, Brar SK, Tyagi RD (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresour Technol 101:2331–2350

    Article  CAS  PubMed  Google Scholar 

  • Maloney S (2001) Pesticide degradation. In: Gadd G (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, London

    Google Scholar 

  • Masaphy S, Henis Y, Levanon D (1996) Manganese enhanced biotransformation of atrazine by the white rot fungus Pleurotus pulmonarius and its correlation with oxidation activity. Appl Environ Microbiol 62:3587–3593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Malik A (2013) Recent advances in microbial metal bioaccumulation. Crit Rev Environ Sci Technol 43:1162–1222

    Article  CAS  Google Scholar 

  • Moreno-Garrido I (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99:3949–3964

    Article  CAS  PubMed  Google Scholar 

  • Mousin CP, Ericuad C, Malosse C, Laugero C, Asther M (1996) Biotransformation of the insecticide lindane by the white rot basidiomycetes Phanerochaete chrysosporium. Pestic Sci 47:51–59

    Article  Google Scholar 

  • Munari FM, Gaio TA, Calloni R, Dillon AJP (2008) Decolorization of textile dyes by enzymatic extract and submerged cultures of Pleurotus sajor-caju. World J Microbiol Biotechnol 24:1383–1392

    Article  CAS  Google Scholar 

  • Nawaz K, Hussain K, Choudary N, Majeed A, Ilyas U, Ghani A, Lin F, Ali K, Afghan S, Raza G, Lashari MI (2011) Eco-friendly role of biodegradation against agricultural pesticides hazards. Afr J Microbiol Res 5:177–183

    Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  PubMed  Google Scholar 

  • Pumpel T, Paknikar KM (2001) Bioremediation technologies for metal containing waste waters using metabolically active microorganism. Adv Appl Microbiol 48:135–169

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Shi S, Ma F, Yan B (2010) Decolorization of reactive dark blue K-R by the synergism of fungus and bacterium using response surface methodology. Bioresour Technol 101:8016–8023

    Article  CAS  PubMed  Google Scholar 

  • Reddy C, Mathew Z (2001) Bioremediation potential of white rot fungi. In: Gadd G (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, London

    Google Scholar 

  • Renganathan S, Thilagaraj WR, Miranda LR, Gautam P, Velan M (2006) Accumulation of Acid Orange 7 Acid Red 18 and Reactive Black 5 by growing Schizophyllum commune. Bioresour Technol 97:2189–2193

    Article  CAS  PubMed  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  PubMed  Google Scholar 

  • Ron EZ, Royse DJ (1992) Interactions of bacteria with cadmium. Biodegradation 3:161–170

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157

    Article  CAS  Google Scholar 

  • Saratale RG, Gandhi SS, Purankar MV, Kurade MB, Govindwar SP, Oh SE, Saratale GD (2013) Decolorization and detoxification of sulfonated azo dye C.I. Remazol Red and textile effluent by isolated Lysinibacillus sp. RGS. J Biosci Bioeng 115:658–667

    Article  CAS  PubMed  Google Scholar 

  • Sasek V, Cajthaml T (2005) Mycoremediation. Current state and perspectives. Int J Med Mushrooms 7:360–361

    Article  Google Scholar 

  • Sathiya Moorthi P, Munuswamy D, Sellamuthu PS, Kandasamy M, Thangavelu KP (2007) Biosorption of textile dyes and effluents by Pleurotus florida and Trametes hirsuta with evaluation of their laccase activity. Iran J Biotechnol 5:114–118

    Google Scholar 

  • Schinner F, Burgstaller W (1989) Extraction of zinc from industrial waste by a Penicillium sp. Appl Environ Microbiol 55:1153–1156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sen K, Pakshirajan K, Santra SB (2012) Modelling the biomass growth and enzyme secretion by the white rot fungus. Appl Biochem Biotechnol 167(4):705–713

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Singh L, Dilbaghi N (2009) Biodegradation of Orange dye by Phanerochaete chrysosporium in simulated wastewater. J Sci Ind Res 68:157–161

    CAS  Google Scholar 

  • Shumate SE, Strandberg GW (1985) Accumulation of metals by microbial cells. In: Moo YM (ed) Comprehensive biotechnology, vol 4. Progamon Press, New York

    Google Scholar 

  • Singh H (2006) Mycoremediation: Fungal Bioremediation. John Wiley and Sons Inc., New York

    Book  Google Scholar 

  • Singh DK (2008) Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments. Indian J Microbiol 48:35–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh M, Singh DK (2014) Biodegradation of endosulfan in broth medium and in soil microcosm by Klebsiella sp. M3. Bull Environ Contam Toxicol 92:237–242

    Article  CAS  PubMed  Google Scholar 

  • Sly LI, Arunpairojana V, Dixon DR (1990) Binding of colloidal MnO2 by extracellular polysaccharides of Pedomicrobium manganicum. Appl Environ Microbiol 56:2791–2794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solıs M, Solıs A, Perez HI, Manjarrez N, Flores M (2012) Microbial decolouration of azo dyes: a review. Process Biochem 47:1723–1748

    Article  CAS  Google Scholar 

  • Strandberg B, Strandberg L, Bergqvist P, Falandysz J, Rappe C (1998) Concentrations and biomagnification of 17 chlordane compounds and other organochlorines in harbor porpoise (Phocoena phocoena) and herring from the southern Baltic Sea. Chemosphere 37:2513–2523

    Article  CAS  PubMed  Google Scholar 

  • Sturman PJ, Stewart PS, Cunningham AB, Bouwer EJ, Wolfram JH (1995) Engineering scale-up in situ bioremediation processes: a review. J Contam Hydrol 19:171–203

    Article  CAS  Google Scholar 

  • Tapia-Tussell R, Perez-Brito D, Rojas-Herrera R, Cortes-Velazquez A, Rivera-Muenoz G, Solis-Pereira S (2011) New laccase-producing fungi isolates with biotechnological potential in dye decolorization. Afr J Biotechnol 10:10134–10142

    Article  CAS  Google Scholar 

  • Tortella G, Durán N, Rubilar O, Parada M, Diez MC (2013) Are white-rot fungi a real biotechnological option for the improvement of environmental health? Crit Rev Biotechnol 15:1350–1365

    Google Scholar 

  • Trejo-Hernadez M, Lopez- Mungia A, Ramirez R (2001) Residual compost of Agaricus bisporus as a source of crude laccase for enzymatic oxidation of phenolic compounds. Process Biochem 36:635–639

    Article  Google Scholar 

  • Tuor U, Winterchalter K, Fietcher A (1995) Enzymes of white rot fungi involved in lignin degradation and ecological determinants for wood decay. J Biotechnol 41:65–74

    Article  Google Scholar 

  • Tychanowicz GK, Zilly A, deSouza CGM, Peralta RM (2004) Decolorization of industrial dyes by solid-state cultures of Pleurotus pulmonarius. Process Biochem 39:855e859

    Article  CAS  Google Scholar 

  • Valli K, Wariish H, Gold M (1992) Degradation of 2, 7-dicholrodibenzo-p-dioxin by the lignin degrading basidiomycetes Phanerochaete chrysosporium. J Bacteriol 174:2131–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdin AA, Sahraoui LHR, Durand R (2004) Degradation of benzo(a)pyrene by mitosporic fungi and extracellular oxidative enzymes. Int Biodeterior Biodegrad 53:65–70

    Article  CAS  Google Scholar 

  • Xiao P, Mori T, Kamei I, Kiyota H, Takagi K, Kondo R (2011) Novel metabolic pathways of organochlorine pesticides dieldrin and aldrin by the white rot fungi of the genus Phlebia. Chemosphere 85:218–224

    Article  CAS  PubMed  Google Scholar 

  • Yadav AK, Kumar N, Sreekrishnan TR, Satya S, Bishnoi NR (2010) Removal of chromium and nickel from aqueous solution in constructed wetland: mass balance, adsorption-desorption and FTIR study. Chem Eng J 160:122–128

    Article  CAS  Google Scholar 

  • Yang S, Hai FI, Nghiem LD, Price W, Roddick F, Moreira MT, Magram SF (2013) Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: a critical review. Bioresour Technol 141:97–108

    Article  CAS  PubMed  Google Scholar 

  • Yavad J, Reddy C (1993) Degradation of benzene, toluene, ethylbenzene and xylene (BTEX) by the lignin degradation basidiomycetes Phanerochaete chrysosporium. Appl Environ Microbiol 59:756–762

    Google Scholar 

  • Yong C, Mcaskie LD, Dean ALR, Chetham AK, Jakeman RJB, Skarnulis AJ (1987) Cadmium accumulation by Citrobacter spp.: the chemical nature of the accumulated metal precipitate and its location in bacterial cells. J Gen Microbiol 133:539

    Google Scholar 

  • Yousefi V, Kariminia HR (2010) Statistical analysis for enzymatic decolorization of acid orange 7 by Coprinus cinereus peroxidase. Int Biodetr Biodegr 64:245–252

    Article  CAS  Google Scholar 

  • Zhang J, Chiao C (2002) Novel approaches for remediation of pesticide pollutants. Int J Environ Pollut 18:423–433

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S., Annepu, S.K., Summuna, B., Gupta, M., Nair, S.A. (2018). Role of Mushroom Fungi in Decolourization of Industrial Dyes and Degradation of Agrochemicals. In: Singh, B., Lallawmsanga, Passari, A. (eds) Biology of Macrofungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-02622-6_8

Download citation

Publish with us

Policies and ethics