Numerical Approaches for Kinetic and Hyperbolic Models

  • Raluca Eftimie
Part of the Lecture Notes in Mathematics book series (LNM, volume 2232)


Due to the complexity of hyperbolic and kinetic models discussed in the previous chapters, it is difficult to gain much understanding of the behaviour of the models only from analytical results. As we have already seen throughout this study, numerical approaches are critical when trying to unravel the patterns exhibited by these models. There are a large variety of approaches to discretise and simulate numerically the kinetic and hyperbolic models described in the previous sections. However, due to the intense activity of this field, it is impossible to do a detailed review of all numerical schemes developed over the past 50–60 years. Therefore, in this chapter we briefly discuss some of these approaches, to give the reader a glimpse of the large variety of numerical schemes existent in the literature. We start by discussing a few numerical methods for macroscopic hyperbolic models, followed by a discussion on the numerical methods for more complex (and higher dimension) kinetic equations. We conclude this chapter with a brief overview of different boundary conditions.


  1. 1.
    G. Dimarco, L. Pareschi, Acta Numer. 23, 369 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    G. Colonna, in Plasma Modelling. Methods and Applications, ed. by G. Colonna, A. D’Angola (IOP, London, 2016), pp. 1–23Google Scholar
  3. 3.
    R. LeVeque, Numerical Methods for Conservation Laws (Birkhäuser, Basel, 1992)zbMATHCrossRefGoogle Scholar
  4. 4.
    C.W. Shu, in High-Order Methods for Computational Physics, vol. 9, ed. by T. Barth, H. Deconinck (Springer, Berlin, 1999), pp. 439–582Google Scholar
  5. 5.
    F. Filbet, G. Russo, in Modelling and Computational Methods for Kinetic Equations, ed. by P. Degod, L. Pareschi, G. Russo (Birkhäuser, Boston, 2004), pp. 117–145Google Scholar
  6. 6.
    F. Filbet, T. Rey, SIAM J. Sci. Comput. 37(3), A1218 (2015)CrossRefGoogle Scholar
  7. 7.
    L. Pareschi, G. Russo, G. Toscani, Modelling and Numerics of Kinetic Dissipative Systems (Nova Science Publ., New York, 2006)zbMATHGoogle Scholar
  8. 8.
    S. MacNamara, G. Strang, in Splitting Methods in Communication, Imaging, Science and Engineering, ed. by R. Glowinski, S. Osher, W. Yin (Springer, Cham, 2017), pp. 95–114Google Scholar
  9. 9.
    J. Butcher, Numerical Methods for Ordinary Differential Equations (Wiley, Hoboken, 2008)zbMATHCrossRefGoogle Scholar
  10. 10.
    W. Hackbusch, Integral Equations: Theory and Numerical Treatment. International Series of Numerical Mathematics (Birkhäuser, Basel, 2012)Google Scholar
  11. 11.
    W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical Recipes in C. The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)Google Scholar
  12. 12.
    R. LeVeque, Finite Volume Methods for Hyperbolic Problems (Cambridge University Press, Cambridge, 2002)zbMATHCrossRefGoogle Scholar
  13. 13.
    C. Chu, Advances in Applied Mechanics, vol. 18 (Academic, New York, 1979), pp. 285–331Google Scholar
  14. 14.
    J. Furst, K. Kozel, Math. Bohem. 126(2), 379 (2001)MathSciNetGoogle Scholar
  15. 15.
    N. Taniguchi, T. Kobayashi, Comput. Fluids 19(3–4), 287 (1991)CrossRefGoogle Scholar
  16. 16.
    S. Godunov, Math. Sbornik 47, 271 (1959)Google Scholar
  17. 17.
    A. Harten, J. Comput. Phys. 49(2), 357 (1983)MathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Harten, B. Engquist, S. Osher, S. Chakravarty, J. Comput. Phys. 71(2), 231 (1987)MathSciNetCrossRefGoogle Scholar
  19. 19.
    C.W. Shu, in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, ed. by B. Cockburn, C. Johnson, C.W. Shu, E. Tadmor. Lecture Notes in Mathematics, vol. 1697 (Springer, Berlin, 1998), pp. 325–432Google Scholar
  20. 20.
    C. Shu, SIAM Rev. 51(1), 82 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer, Berlin, 2009)zbMATHCrossRefGoogle Scholar
  22. 22.
    H. Nessyahu, E. Tadmor, J. Comput. Phys. 87, 408 (1990)MathSciNetCrossRefGoogle Scholar
  23. 23.
    P. Roe, J. Comput. Phys. 43, 357 (1981)MathSciNetCrossRefGoogle Scholar
  24. 24.
    B.V. Leer, J. Comput. Phys. 23(3), 263 (1977)CrossRefGoogle Scholar
  25. 25.
    P. Roe, Annu. Rev. Fluid Mech. 18, 337 (1986)CrossRefGoogle Scholar
  26. 26.
    P. Sweby, SIAM J. Numer. Anal. 21(5), 995 (1984)MathSciNetCrossRefGoogle Scholar
  27. 27.
    B.V. Leer, J. Comput. Phys. 14(4), 361 (1974)CrossRefGoogle Scholar
  28. 28.
    G.S. Jiang, E. Tadmor, SIAM J. Sci. Comput. 19(6), 1892 (1998)MathSciNetCrossRefGoogle Scholar
  29. 29.
    E. Godlewski, P. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws (Springer, New York, 1996)zbMATHCrossRefGoogle Scholar
  30. 30.
    L. Pareschi, G. Russo, ESAIM Proc. 10, 35–75 (2001)CrossRefGoogle Scholar
  31. 31.
    B. Lapeyre, E. Pardoux, R. Sentis, Introduction to Monte-Carlo Methods for Transport and Diffusion Equations (Oxford University Press, Oxford, 2003)zbMATHGoogle Scholar
  32. 32.
    S. Rajasanow, W. Wagner, Stochastic Numerics for the Boltzmann Equation (Springer, Berlin, 2005)Google Scholar
  33. 33.
    L. Pareschi, G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods (Oxford University Press, Oxford, 2014)zbMATHGoogle Scholar
  34. 34.
    L. Pareschi, G. Toscani, C. Villani, Numer. Math. 93, 527 (2003)MathSciNetCrossRefGoogle Scholar
  35. 35.
    L. Pareschi, B. Perthame, Transp. Theory Stat. Phys. 25(3–5), 369 (1996)CrossRefGoogle Scholar
  36. 36.
    L. Pareschi, G. Russo, Transp. Theory Stat. Phys. 29(3–5), 431 (2000)CrossRefGoogle Scholar
  37. 37.
    L. Pareschi, G. Russo, SIAM J. Numer. Anal. 37, 1217 (2000)MathSciNetCrossRefGoogle Scholar
  38. 38.
    I. Gamba, J. Haack, S. Motsch, J. Comput. Phys. 297, 32 (2015)MathSciNetCrossRefGoogle Scholar
  39. 39.
    P. Degond, L. Pareschi, G. Russo (eds.), Modelling and Computational Methods for Kinetic Equations (Birkhäuser, Boston, 2004)Google Scholar
  40. 40.
    F. Rogier, J. Schneider, Transp. Theory Stat. Phys. 23(1–3), 313 (1994)CrossRefGoogle Scholar
  41. 41.
    G. Bird, Molecular Gas Dynamics (Oxford University Press, London, 1976)Google Scholar
  42. 42.
    G. Bird, Molecular Gas Dynamics and Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1994)Google Scholar
  43. 43.
    L. Pareschi, G. Russo, SIAM J. Sci. Comput. 23(4), 1253 (2001)MathSciNetCrossRefGoogle Scholar
  44. 44.
    K. Nanbu, in Proceedings of the 15th International Symposium on Rarefied Gas Dynamics, ed. by V. Boffi, C. Cercignani (1986), pp. 369–383Google Scholar
  45. 45.
    H. Babovsky, Math. Methods Appl. Sci. 8, 223 (1986)MathSciNetCrossRefGoogle Scholar
  46. 46.
    I. Boyd, J. Stark, J. Comput. Phys. 80(2), 374 (1989)CrossRefGoogle Scholar
  47. 47.
    L. Pan, G. Liu, B. Khoo, B. Song, J. Micromech. Microeng. 10(1), 21 (2000)CrossRefGoogle Scholar
  48. 48.
    L. Chao, S. Kwak, S. Ansumali, Int. J. Mod. Phys. 25, 1340023 (2014)CrossRefGoogle Scholar
  49. 49.
    G. Dimarco, L. Pareschi, in Hyperbolic Problems: Theory, Numerics, Applications, ed. by S. Benzoni-Gavage, D. Serre (Springer, Berlin, 2008)Google Scholar
  50. 50.
    L. Pareschi, G. Russo, Transp. Theory Stat. Phys. 29(3–5), 415 (2000)CrossRefGoogle Scholar
  51. 51.
    P. Degond, Panoramas et Syntheses 39–40, 1 (2013)Google Scholar
  52. 52.
    J. Carrillo, R. Eftimie, F. Hoffmann, Kinetic Relat. Model. 8(3), 413 (2015)CrossRefGoogle Scholar
  53. 53.
    E. Gabetta, L. Pareschi, G. Toscani, SIAM. J. Numer. Anal. 34(6), 2168 (1997)MathSciNetCrossRefGoogle Scholar
  54. 54.
    S. Jin, Riv. Mat. Univ. Parma 3, 177 (2012)Google Scholar
  55. 55.
    P. Degond, G. Dimarco, L. Mieussens, J. Comput. Phys. 227(2), 1176 (2007)MathSciNetCrossRefGoogle Scholar
  56. 56.
    C. Cercignani, The Boltzmann Equation and Its Applications (Springer, New York, 1987)zbMATHGoogle Scholar
  57. 57.
    G.D.P. Degond, L. Pareschi, Int. J. Numer. Methods Fluids 67(2), 189 (2011)CrossRefGoogle Scholar
  58. 58.
    G. Radtke, N. Hadjiconstantinou, Phys. Rev. E 79, 056711 (2009)CrossRefGoogle Scholar
  59. 59.
    L. Pareschi, R. Caflisch, IMA J. Appl. Math. 135, 57 (2004)Google Scholar
  60. 60.
    L. Pareschi, ESAIM Proc. 15, 87 (2005)CrossRefGoogle Scholar
  61. 61.
    P. Degond, S. Jin, L. Mieussens, J. Comput. Phys. 209, 665 (2005)MathSciNetCrossRefGoogle Scholar
  62. 62.
    S. Chen, E. Weinan, Y. Liu, C.W. Shu, J. Comput. Phys. 225(2), 1314 (2007)MathSciNetCrossRefGoogle Scholar
  63. 63.
    G. Radtke, J.P. Péraud, N. Hadjiconstantinou, Philos. Trans. R. Soc. A 23, 030606 (2013)Google Scholar
  64. 64.
    W. Ren, H. Liu, S. Jin, J. Comput. Phys. 276, 380 (2014)MathSciNetCrossRefGoogle Scholar
  65. 65.
    B. Zhang, H. Liu, S. Jin, J. Comput. Phys. 305, 575 (2016)MathSciNetCrossRefGoogle Scholar
  66. 66.
    J. Bourgat, P. LeTallec, B. Berthame, Y. Qiu, Contemp. Math. 157, 377 (1994)CrossRefGoogle Scholar
  67. 67.
    S. Tiwari, J. Comput. Phys. 144(2), 710 (1998)MathSciNetCrossRefGoogle Scholar
  68. 68.
    K. Hadeler, Math. Comput. Model. 31(4–5), 75 (2000)CrossRefGoogle Scholar
  69. 69.
    T. Hillen, Can. Appl. Math. Q. 18(1), 1 (2010)MathSciNetGoogle Scholar
  70. 70.
    J. Buhl, D.J.T. Sumpter, I.D. Couzin, J.J. Hale, E. Despland, E.R. Miller, S.J. Simpson, Science 312, 1402 (2006)CrossRefGoogle Scholar
  71. 71.
    A. Portz, A. Seyfried, in Pedestrian and Evacuation Dynamics, ed. by R. Peacock, E. Kuligowski, J. Averill (Springer, Boston, 2011), pp. 577–586CrossRefGoogle Scholar
  72. 72.
    F. Filbert, Multiscale Model. Simul. 10(3), 792 (2012)MathSciNetCrossRefGoogle Scholar
  73. 73.
    J.P. Péraud, C. Landon, N. Hadjiconstantinou, Annu. Rev. Heat Tranf. 17, 205 (2014)CrossRefGoogle Scholar
  74. 74.
    C. Cercignani, Theory and Application of the Boltzmann Equation (Scottish Academic Press, Edinburgh, 1975)zbMATHGoogle Scholar
  75. 75.
    S. Ansumali, I. Karlin, Phys. Rev. E 66(2), 026311 (2002)MathSciNetCrossRefGoogle Scholar
  76. 76.
    C.D. Wilson, R.K. Agarwal, F.G. Tcheremissine, Evaluation of various types of wall boundary conditions for the Boltzmann equation. AIP Conf. Proc. 1333, 146–151 (2011)CrossRefGoogle Scholar
  77. 77.
    S. Jin, L. Pareschi, G. Toscani, SIAM J. Numer. Anal. 38, 312 (2000)CrossRefGoogle Scholar
  78. 78.
    M. Lemou, F. Méhats, SIAM J. Sci. Comput. 34(6), B734 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Raluca Eftimie
    • 1
  1. 1.Division of MathematicsUniversity of DundeeDundeeUK

Personalised recommendations