Skip to main content

Study and Analysis of Underwater Wireless Power Transfer

  • Chapter
  • First Online:
Book cover Underwater Wireless Power Transfer

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

  • 777 Accesses

Abstract

A detailed study of the UWPT system is presented in this chapter. Since the properties of the coils also contribute to the overall efficiency of the system, we studied the self-inductance, capacitance, and radiation resistance of the coil underwater. The findings show the practicality of transferring power wirelessly in ocean environment which could help reduce the need for oversized batteries in distributed ocean systems and make a profound impact on the advancement of underwater devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Witricity [Online], http://www.witricity.com/

  2. Qualcomm/haloipt [Online], http://www.qualcomm.com

  3. J.M. Miller, O.C. Onar, M. Chinthavali, Primary-side power flow control of wireless power transfer for electric vehicle charging. IEEE J. Emerg. Sel. Top. Power Electron. 3(1), 147–162 (2015)

    Article  Google Scholar 

  4. S.Y.R. Hui, W. Zhong, C.K. Lee, A critical review of recent progress in mid-range wireless power transfer. IEEE Trans. Power Electron. 29(9), 4500–4511 (2014)

    Article  Google Scholar 

  5. T.M. Hayslett, T. Orekan, P. Zhang, Underwater wireless power transfer for ocean system applications, in OCEANS 2016 MTS/IEEE Monterey (2016)

    Google Scholar 

  6. R.S. McEwen, B.W. Hobson, L. McBride, Docking control system for a 54-cm-diameter (21-in) AUV. IEEE J. Ocean. Eng. 33(4), 550–562 (2008)

    Article  Google Scholar 

  7. R. Stokey, B. Allen, T. Austin, Enabling technologies for REMUS docking: an integral component of an autonomous ocean-sampling network. IEEE J. Ocean. Eng. 26(4), 487–497 (2001)

    Article  Google Scholar 

  8. K. Teo, E. An, P.J. Beaujean, A robust fuzzy autonomous underwater vehicle (AUV) docking approach for unknown current disturbances. IEEE J. Ocean. Eng. 37(2), 143–155 (2012)

    Article  Google Scholar 

  9. W. Zhong, S.Y.R. Hui, Maximum energy efficiency tracking for wireless power transfer systems. IEEE Trans. Power Electron. 30(7), 4025–4034 (2015)

    Article  Google Scholar 

  10. A.P. Sample, D. Meyer, J.R. Smith, Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 58(2), 544–554 (2011)

    Article  Google Scholar 

  11. N.Y. Kim, K.Y. Kim, J. Choi, C.W. Kim, Adaptive frequency with power-level tracking system for efficient magnetic resonance wireless power transfer. Electron. Lett. 48(8), 452–454 (2012)

    Article  Google Scholar 

  12. B.H. Waters, A.P. Sample, P. Bonde, J.R. Smith, Powering a ventricular assist device (VAD) with the free-range resonant electrical energy delivery (FREE-D) system. Proc. IEEE 100(1), 138–149 (2012)

    Article  Google Scholar 

  13. Z. Pantic, K. Lee, S.M. Lukic, Receivers for multifrequency wireless power transfer: design for minimum interference. IEEE J. Emerg. Sel. Top. Power Electron. 3(1), 234–241 (2015)

    Article  Google Scholar 

  14. J. Park, Y. Tak, Y. Kim, Y. Kim, S. Nam, Investigation of adaptive impedance matching methods for near-field wireless power transfer. IEEE Trans. Antennas Propag. 59(5), 1769–1773 (2011)

    Article  Google Scholar 

  15. L. Huang, A.P. Hu, A.K. Swain, Y. Su, Z-impedance compensation for wireless power transfer based on electric field. IEEE Trans. Power Electron. 31(11), 7556–7563 (2016)

    Article  Google Scholar 

  16. T.C. Beh, T. Imura, M. Kato, Y. Hori, Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching, in IEEE International Symposium on Industrial Electronics, 7 July 2010

    Google Scholar 

  17. F. Zhang, S.A. Hackworth, W. Fu, C. Li, Z. Mao, M. Sun, Relay effect of wireless power transfer using strongly coupled magnetic resonances. IEEE Trans. Magn. 47(5), 1478–1481 (2011)

    Article  Google Scholar 

  18. D. Ahn, S. Hong, A study on magnetic field repeater in wireless power transfer. IEEE Trans. Ind. Electron. 60(1), 360–371, (2013)

    Article  Google Scholar 

  19. M.J. Chabalko, J. Besnoff, D.S. Ricketts, Magnetic field enhancement in wireless power with metamaterials and magnetic resonant couplers. IEEE Antennas Wirel. Propag. Lett. 15, 452–455 (2015)

    Article  Google Scholar 

  20. E.S. Rodríguez, A.K. RamRakhyani, D. Schurig, Compact low-frequency metamaterial design for wireless power transfer efficiency enhancement. IEEE Trans. Microw. Theory Tech. 64(5), 1644–1654 (2016)

    Article  Google Scholar 

  21. T. Orekan, P. Zhang, C. Shih, Analysis, design and maximum power efficiency tracking for undersea wireless power transfer. IEEE J. Emerg. Sel. Top. Power Electron. 6(2), 843–854 (2017)

    Article  Google Scholar 

  22. J. Huh, S.W. Lee, W.Y. Lee, G.H. Cho, C.T. Rim, Narrow-width inductive power transfer system for online electrical vehicles. IEEE Trans. Power Electron. 26(12), 3666–3679 (2011)

    Article  Google Scholar 

  23. C. Fang, J. Song, L. Lin, Y. Wang, Practical considerations of series-series and series-parallel compensation topologies in wireless power transfer system application, in 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW) (2017), pp. 255–259

    Google Scholar 

  24. S. Wang, J. Chen, Z. Hu, C. Rong, M. Liu, Optimisation design for series-series dynamic WPT system maintaining stable transfer power. IET Power Electron. 10(9), 987–995 (2017)

    Article  Google Scholar 

  25. Y. Wang, Y. Yao, X. Liu, D. Xu, L. Cai, An LC/S compensation topology and coil design technique for wireless power transfer. IEEE Trans. Power Electron. 33(3), 2007–2025 (2018)

    Article  Google Scholar 

  26. M. Ishihara, K. Umetani, H. Umegami, E.Hiraki, M. Yamamoto, Quasi-duality between SS and SP topologies of basic electric-field coupling wireless power transfer system. Electron. Lett. 52(25), 2057–2059 (2016)

    Article  Google Scholar 

  27. T. Campi, S. Cruciani, F. Maradei, M. Feliziani, Near-field reduction in a wireless power transfer system using LCC compensation. IEEE Trans. Electromagn. Compat. 59(2), 686–694 (2017)

    Article  Google Scholar 

  28. K. Iizuka, R. King, C. Harrison, Self- and mutual admittances of two identical circular loop antennas in a conducting medium and in air. IEEE Trans. Antennas Propag. 14(4), 440–450 (1966)

    Article  Google Scholar 

  29. A. Jenkins, V. Bana, G. Anderson, Impedance of a coil in seawater, in IEEE Antennas and Propagation Society International Symposium (APSURSI) (2014)

    Google Scholar 

  30. M.B. Kraichman, Impedance of a circular loop antenna in a infinite conducting medium. J. Res. Natl. Bur. Stand. Radio Propag. 66D(4), 499–503 (1962)

    Article  Google Scholar 

  31. J.R. Wait, Insulated loop antenna immersed in a conducting medium. J. Res. Natl. Bur. Stand. 59(2), 133–137 (1957)

    Article  Google Scholar 

  32. S. Babic, F. Sirois, C. Akyel, C. Girardi, Mutual inductance calculation between circular filaments arbitrarily positioned in space: alternative to grover’s formula. IEEE Trans. Magn. 46(9), 3591–3600 (2010)

    Article  Google Scholar 

  33. C. Zhang, W. Zhong, X. Liu, S.Y.R. Hui, A fast method for generating time-varying magnetic field patterns of mid-range wireless power transfer systems. IEEE Trans. Power Electron. 30(3), 1513–1520 (2015)

    Article  Google Scholar 

  34. P. Hadadtehrani, P. Kamalinejad, R. Molavi, S. Mirabbasi, On the use of conical helix inductors in wireless power transfer systems, in IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) (2016)

    Google Scholar 

  35. X. Shi, C. Qi, M. Qu, S. Ye, G. Wang, L. Sun, Z. Yu, Effects of coil shapes on wireless power transfer via magnetic resonance coupling. J. Electromagn. Waves Appl. 28(11), 1316–1324 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orekan, T., Zhang, P. (2019). Study and Analysis of Underwater Wireless Power Transfer. In: Underwater Wireless Power Transfer. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-02562-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02562-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02561-8

  • Online ISBN: 978-3-030-02562-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics