Advertisement

Topology Based Modeling of Sewing Stitches

  • Yordan KyosevEmail author
Chapter

Abstract

Sewing stitches are used to connect two or more textile structures. Their modelling is required at the places, where the yarn level model has to contain all elements. This chapter represent the topological rules for modelling the main types of stitches. Considerations about the number of keypoints and the type of the interpolation of the curve between these are given.

Keywords

Sewing stitches Modelling Topology 

References

  1. 1.
    Brinkert, N.: Experimentelle Evaluation der Funktionalität einer neuartigen Zierstich-Nähmaschine sowie 3D Modellierung der Stichvariationen mit der Software TexGen. Hochschule Niederrhein, Fachbereich Textil- und Bekleidungstechnik, Mönchengladbach (2016)Google Scholar
  2. 2.
    Floeck, M., Stadtfeld, H.C., Mitschang, P., Bickerton, S.: Impact of stitching processes on the compaction behavior of glass fiber reinforcements. J. Ind. Text. 36(2), 151–165 (2016).  https://doi.org/10.1177/1528083706068667CrossRefGoogle Scholar
  3. 3.
    Koziol, M.: Effect of thread tension on mechanical performance of stitched glass fibre-reinforced polymer laminates—experimental study. J. Compos. Mater. 47(16), 1919–1930 (2012).  https://doi.org/10.1177/0021998312452179CrossRefGoogle Scholar
  4. 4.
    Koziol, M.: Experimental study on the effect of stitch arrangement on mechanical performance of gfrp laminates manufactured on a basis of stitched preforms. J. Compos. Mater. 46(9), 1067–1078 (2012).  https://doi.org/10.1177/0021998311414947CrossRefGoogle Scholar
  5. 5.
    Kyosev, Y., Brinkert, N., Zöll, K.: Strategy for simulating dry preforms for composites connected with sewing stitches. In: Lomov, S., Gorbatikh, L., Swolfs, Y. (eds.) COMPTest 2017 Leuven—8th International Conference on Composites Testing and Model Identification—Presentations. KU LEuven, Leuven (2017)Google Scholar
  6. 6.
    Ogale, A., Mitschang, P.: Compaction behavior of assembled fiber reinforced preforms. J. Ind. Text. 37(1), 15–29 (2016).  https://doi.org/10.1177/1528083707078195CrossRefGoogle Scholar
  7. 7.
    Ogale, A., Mitschang, P.: Tailoring of textile preforms for fibre-reinforced polymer composites. J. Ind. Text. 34(2), 77–96 (2016).  https://doi.org/10.1177/1528083704046949CrossRefGoogle Scholar
  8. 8.
    Rödel, H.: Kettenstiche. In: Gries, T., Klopp, K. (eds.) Füge- und Oberflächentechnologien für Textilien, VDI-Buch, pp. 14–18. Springer, Berlin (2007)Google Scholar
  9. 9.
    Sankaran, V., Younes, A., Engler, T., Cherif, C.: A novel processing solution for the production of spatial three-dimensional stitch-bonded fabrics. Text. Res. J. 82(15), 1531–1544 (2012).  https://doi.org/10.1177/0040517512452945CrossRefGoogle Scholar
  10. 10.
    Singh, H., Mukhopadhyay, A., Chatterjee, A.: Influence of bias angle of stitching on tensile characteristics of lapped seam parachute canopy fabric—part i: mathematical modelling for determining test specimen size. J. Ind. Text. 46(1), 292–319 (2015).  https://doi.org/10.1177/1528083716631331CrossRefGoogle Scholar
  11. 11.
    Tan, K.T., Watanabe, N., Iwahori, Y.: Impact damage resistance, response, and mechanisms of laminated composites reinforced by through-thickness stitching. Int. J. Damage Mech. 21(1), 51–80 (2010).  https://doi.org/10.1177/1056789510397070CrossRefGoogle Scholar
  12. 12.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Textile and Clothing TechnologyHochschule Niederrhein, University of Applied SciencesMönchengladbachGermany

Personalised recommendations