Skip to main content

Computational Mechanics of the One Dimensional Continuum as Refinement of the Topology Based Models

  • Chapter
  • First Online:
Book cover Topology-Based Modeling of Textile Structures and Their Joint Assemblies
  • 496 Accesses

Abstract

The topological methods, described in the previous chapters, can be used for representation of an idealized geometry of the textile structures. In order the relaxed state of these structures to be achieved, mechanical compuations has to be performed. This chapter presents few mechanical methods, developed by the author and applied for calculation of the mechanical equilibrium of textile structures. The yarn is modelled as diskretized model and the dynamics equilibrium equation is integrated in the time using Verlet algorithm. Application of the algorithm for unwinding yarn and for knitted structures are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batra, S.K., Ghosh, T., Zeidman, M.: Integrated approach to dynamic analysis of the ring spinning process, part ii: with air drag. Text. Res. J. 59, 416 (1989)

    Article  Google Scholar 

  2. Belytschko, T., Liu, W., Moran, B., Elkhodary, K.: Nonlinear Finite Elements for Continua and Structures, 2nd edn. Wiley, Chichester (2014)

    Google Scholar 

  3. Berger, R.: Instationäre bewegung und stabilitätsverhalten eindimensionaler kontinua. In: Fortschrittberichte VDI, 18. VDI Verlag (1996)

    Google Scholar 

  4. Buckingham, E.: On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4(4), 345–376 (1914). https://doi.org/10.1103/PhysRev.4.345

    Article  Google Scholar 

  5. Durville, D.: Finite element simulation of textile materials at mesoscopic scale. In: Finite Element Modelling of Textiles and Textile Composites—St-Petersburg—26–28 September (2007)

    Google Scholar 

  6. Durville, D.: Simulation of the mechanical behaviour of woven fabrics at the scale of fibers. Int. J. Mater. Form. 3(S2), 1241–1251 (2010). https://doi.org/10.1007/s12289-009-0674-7

    Article  Google Scholar 

  7. Erleben, K., Sporring, J., Henriksen, K., Dohlmann, H.: Physics-Based Animation, 1st edn. Charles River Media graphics series. Charles River Media, Hingham, MA (2005)

    Google Scholar 

  8. Fraser, W.B.: Ring spinning: modelling yarn balloons mathematically. Text. Horiz. 16(2), 37–39 (1996)

    Google Scholar 

  9. Ghosh, T., Batra, S., Murthy, A.: Dynamic analysis of yarn unwinding from cylindrical packages. part i: parametric studies of the two-region problem. Text. Res. J. textbf71(9), 771–778 (2001)

    Article  CAS  Google Scholar 

  10. Hallquist, J.: Ls-dyna theoretical manual. www.dynamore.de

  11. Hart, K., de Jong, S., Postle, R.: Analysis of the single bar warp knitted structure using an energy minimization technique: part i: theoretical development. Text. Res. J. 55(8), 489–498 (1985). https://doi.org/10.1177/004051758505500807. http://trj.sagepub.com/cgi/content/abstract/55/8/489

    Article  Google Scholar 

  12. Hart, K., de Jong, S., Postle, R.: Analysis of the single bar warp knitted structure using an energy minimization technique: part ii: results and comparison with woven and weft knitted analysis. Text. Res. J. 55(9), 530–539 (1985). https://doi.org/10.1177/004051758505500903. http://trj.sagepub.com/cgi/content/abstract/55/9/530

    Article  Google Scholar 

  13. de Jong, S., Postle, R.: A general energy analysis of fabric mechanics using optimal control theory. Text. Res. J. 48(3), 127–135 (1978). http://dx.doi.org/10.1177/004051757804800302

  14. Kaldor, J., James, D.L., Marschner, S.: Simulating knitted cloth at the yarn level. In: Proceedings of SIGGRAPH 2008. Held in Los Angeles, California, August 2008 (2008)

    Google Scholar 

  15. Konopasek, M.: Classical elastica theory and its generalizations: the mechanics of flexible fibre assemblies. pp. 255–274. Sijthoff and Noordhoff (1980)

    Google Scholar 

  16. Konyukhov, A.: Geometrically Exact Theory for Contact Interactions. KIT Scientific Publishing, Karlsruhe (2011)

    Google Scholar 

  17. Kothari, V., Leaf, G.: Unwinding of yarns from packages. part ii. unwinding from cylindrical packages. J. Text. Inst. 70(3), 96 (1979)

    Google Scholar 

  18. Kothari, V., Leaf, G.: Unwinding of yarns from packages. part iv. two-for-one twisting: the storage disc and balloon. J. Text. Inst. 70(5), 184 (1979)

    Google Scholar 

  19. Kothari, V., Leaf, G.: Unwinding of yarns from packages. part iii. unwinding from conical packages. J. Text. Inst. 70(5), 172 (1979)

    Google Scholar 

  20. Krivtzov, A.M., Krivtzova, N.V.: Particle method and its application in the mechanics of elastic solids (in Russian). Dalnevostochnui matematicheskii Journal DVO RAN 3(2), 254–276 (2002)

    Google Scholar 

  21. Kyosev, Y., Angelova, Y., Kovar, R.: 3d modelling of plain weft knitted structures from compressible yarn. Res. J. Text. Appar. 9, 88–97 (2005). Hong Kong

    Google Scholar 

  22. Kyosev, Y., Todorov, M.: Computational model of 1d continuum motion. case of textile yarn unwinding without air resistance. In: Lecture Notes in Computer Science (2007)

    Google Scholar 

  23. Kyosev, Y.K., Angelova Y., Kovar, R.: 3d modelling of plain weft knitted structures from compressible yarn. Res. J. Text. Appar. 9(1), 88–97 (2005). Hong Kong

    Google Scholar 

  24. Kyosev, Y.K., Renkens, W.: Modelling and visualization of knitted fabrics. In: Chen, X. (ed.) Modelling and Predicting Textile Behaviour, pp. 225–262. Woodhead Publishing and In association with the Textile Institute and CRC Press, Cambridge and Boca Raton and Fla (2010)

    Chapter  Google Scholar 

  25. Kyosev, Y.K., Renkens, W.: Computational mechanics of knitted structures—critical overview. In: Eberhardsteiner, J., et al. (ed.) European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) (2012)

    Google Scholar 

  26. Kyosev, Y.K., Renkens, W.: Simulation of the Mechanical Behaviour of Warp Knitted Fabrics (2013)

    Google Scholar 

  27. Leaf, G.G.A.: The geometry of a plain knitted loop. J. Text. Inst. 45, T587–605 (1955)

    Article  Google Scholar 

  28. Lisini, G.E.A.: A comparison of stationary and non-stationary mathematical models for the ring-spinning process. J. Text. Inst. 83(4), 550–559 (2001)

    Article  Google Scholar 

  29. Lomov, S.V., et al.: Wisetex (2012)

    Google Scholar 

  30. NN: Getting started with abaqus

    Google Scholar 

  31. Postle, R., Carnaby, G., de Jong, S.: The Mechanics of Wool Structures. Ellis Horwood Limited (1988)

    Google Scholar 

  32. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press (1992)

    Google Scholar 

  33. Przybyl, K.: Dynamics of yarn in the process of its formation on the ring-spinning machine. Fibres Text. East. Eur. 3(3), 36–38 (1995)

    Google Scholar 

  34. Przybyl, K.: Modelling yarn tension in the process of manufacturing on the ring-spinning machine. Fibres Text. East. Eur. 6(3), 30–33 (1998)

    Google Scholar 

  35. Stump, D.M., Fraser, W.B.: Transient solutions of the ring-spinnign balloon equations. J. Appl. Mech. June, 523–528 (1996)

    Article  Google Scholar 

  36. Wriggers, P.: Computational Contact Mechanics. Springer (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yordan Kyosev .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kyosev, Y. (2019). Computational Mechanics of the One Dimensional Continuum as Refinement of the Topology Based Models. In: Topology-Based Modeling of Textile Structures and Their Joint Assemblies. Springer, Cham. https://doi.org/10.1007/978-3-030-02541-0_12

Download citation

Publish with us

Policies and ethics