Advertisement

Assembly Level—From Textile Structures to Textile Assemblies

  • Yordan KyosevEmail author
Chapter

Abstract

The cloths and other ready to use products are normally represented as 2D objects. For thier modelling are used shell or plate elements, which elastic behaviour has to be identified bevore the modelling. The yarn level is seldom modelled until now for the ready structures, but with the increasing computational power this will become possible. This chapter presents a method of the structural cells, as topological units of the yarn level structure. Some direct applications in the area of spacer fabrucs and tubular fabrics are demonstrated. Issues of the modelling of cutting of fabrics are discoussed.

Keywords

Textile assembly Yarn level Structural cell Cutting 3D geometry 

References

  1. 1.
    Cebulla, H.: Formgerechte zwei- und dreidimensionale Mehrlagengestricke mit biaxialer Verstärkung: Entwicklung von Maschine, Technologie und Produkten, Dresdner Forschungen Maschinenwesen, vol. 20. TUDpress, Verl. der Wiss, Dresden (2005)Google Scholar
  2. 2.
    Erleben, K., Sporring, J., Henriksen, K., Dohlmann, H.: Physics-Based Animation. Charles River Media Graphics Series, 1st edn. Charles River Media, Hingham, MA (2005)Google Scholar
  3. 3.
    Haupt, M., Lin, H., Cherif, C., Krzywinski, S.: Weft-knitted preforms adapted for crash and 3D applications. J. Fash. Technol. Text. Eng. s2 (2016).  https://doi.org/10.4172/2329-9568.S2-005
  4. 4.
    Helbig, F.U.: Druckelastische 3D-Gewirke: Gestaltungsmerkmale und mechanische Eigenschaften druckelastischer Abstandsgewirke. Südwestdeutscher Verlag für Hochschulschriften (2011). http://www.qucosa.de/fileadmin/data/qucosa/documents/5207/data/Diss.pdf
  5. 5.
    Kyosev, Y., Brinkert, N., Zöll, K.: Strategy for simulating dry preforms for composites connected with sewing stitches. In: Lomov, S., Gorbatikh, L., Swolfs, Y. (eds.) COMPTest 2017 Leuven—8th International Conference on Composites Testing and Model Identification—Presentations. KU LEuven, Leuven (2017)Google Scholar
  6. 6.
    Lomov, S., Bernal, E., Koissin, V., Peeters, T.: Integrated Textile Preprocessor Wisetex, Version 2.5: Computational Models, Methods and AlgorithmsGoogle Scholar
  7. 7.
    Lomov, S.V., et.al.: Wisetex (2012)Google Scholar
  8. 8.
    Renkens, W., Kyosev, Y.: Geometry modelling of warp knitted fabrics with 3D form. Text. Res. J. 81 (4), 437–443 (2011).  https://doi.org/10.1177/0040517510385171CrossRefGoogle Scholar
  9. 9.
    Roye, A., Gries, T.: 3-D textiles for advanced cement based matrix reinforcement. J. Ind. Text. 37(2), 163–173 (2007/10/01)CrossRefGoogle Scholar
  10. 10.
    Sherburn, M.: Geometric and mechanical modelling of textiles. Ph.D. University of Nottingham, Notthingham (July 2007). http://etheses.nottingham.ac.uk/303/1/thesis-final.pdf
  11. 11.
    Trümper, W., Lin, H., Callin, T., Bollengier, Q., Cherif, C., Krzywinski, S.: Recent developments in multi-layer flat knitting technology for waste free production of complex shaped 3D-reinforcing structures for composites. In: IOP Conference Series: Materials Science and Engineering, vol. 141, pp. 012–015 (2016).  https://doi.org/10.1088/1757-899X/141/1/012015CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Textile and Clothing TechnologyHochschule Niederrhein, University of Applied SciencesMönchengladbachGermany

Personalised recommendations