Solution Approach

  • Illa Weiss
Part of the Contributions to Management Science book series (MANAGEMENT SC.)


This chapter deals with solution methods we have developed in order to solve instances of the resource transfer problem. In the first section, we address the problem of allocating renewable resource units to events if the occurrence times and the modes are given. This allows us to represent a solution for the resource transfer problem as a schedule (t, x), for which the allocation of resource units to events can be achieved by solving an appropriate network flow problem. In the second section, we describe our solution methods, which are a branch-and-bound algorithm and some truncated variants of it. The third section is concerned with consistency tests, which can be utilized to reduce the search space of the branch-and-bound algorithm by removing inconsistent values from the domains of the decision variables. Putting it simply, these consistency tests introduce new temporal constraints derived from resource availabilities and mode assignments to events.


  1. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and applications. Prentice Hall, Englewood CliffsGoogle Scholar
  2. Baptiste P, Le Pape C (1996) Edge-finding constraint propagation algorithms for disjunctive and cumulative scheduling. In: Proceedings of the 15th international conference of the U.K. Planning Special Interest Group, Liverpool, United Kingdom, pp 339–345Google Scholar
  3. Baptiste P, Le Pape C, Nuijten W (1999) Satisfiability tests and time-bound adjustments for cumulative scheduling problems. Ann Oper Res 92(1–4):305–333CrossRefGoogle Scholar
  4. Baptiste P, Le Pape C, Nuijten W (2001) Constraint-based scheduling: applying constraint programming to scheduling problems. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  5. Baptiste P, Laborie P, Le Pape C, Nuijten W (2006) Constraint-based scheduling and planning. In: Rossi F, van Beek P, Walsh T (eds) Handbook of constraint programming. Elsevier, Amsterdam, pp 761–799CrossRefGoogle Scholar
  6. Bartusch M, Möhring RH, Radermacher FJ (1988) Scheduling project networks with resource constraints and time windows. Ann Oper Res 16(1–4):201–240Google Scholar
  7. Bertsekas DP (1998) Network optimization: continuous and discrete models. Athena Scientific, BelmontGoogle Scholar
  8. Brucker P, Knust S (2003) Lower bounds for resource-constrained project scheduling problems. Eur J Oper Res 149(2):302–313CrossRefGoogle Scholar
  9. Brucker P, Knust S, Schoo A, Thiele O (1998) A branch and bound algorithm for the resource-constrained project scheduling problem. Eur J Oper Res 107(2):272–288CrossRefGoogle Scholar
  10. De Reyck B, Herroelen WS (1998) A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations. Eur J Oper Res 111(1):152–174CrossRefGoogle Scholar
  11. De Reyck B, Herroelen WS (1999) The multi-mode resource-constrained project scheduling problem with generalized precedence relations. Eur J Oper Res 119(2):538–556CrossRefGoogle Scholar
  12. Dorndorf U (2002) Project scheduling with time windows: from theory to applications. Physica-Verlag, HeidelbergCrossRefGoogle Scholar
  13. Dorndorf U, Phan-Huy T, Pesch E (1999) A survey of interval capacity consistency tests for time- and resource-constrained scheduling. In: Wȩglarz J (ed) Project scheduling: recent models, algorithms and applications. Kluwer Academic Publishers, Dordrecht, pp 213–238CrossRefGoogle Scholar
  14. Dorndorf U, Pesch E, Phan-Huy T (2000a) A time-oriented branch-and-bound algorithm for resource-constrained project scheduling with generalised precedence constraints. Manage Sci 46(10):1365–1384CrossRefGoogle Scholar
  15. Dorndorf U, Pesch E, Phan-Huy T (2000b) Constraint propagation techniques for the disjunctive scheduling problem. Artif Intell 122(1):189–240CrossRefGoogle Scholar
  16. Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5(6):345CrossRefGoogle Scholar
  17. Franck B, Neumann K, Schwindt C (2001) Truncated branch-and-bound, schedule construction, and schedule-improvement procedures for resource-constrained project scheduling. OR Spectr 23(3):297–324CrossRefGoogle Scholar
  18. Heilmann R (2000) Ressourcenbeschränkte Projektplanung im Mehr-Modus-Fall. Gabler, WiesbadenCrossRefGoogle Scholar
  19. Heilmann R (2001) Resource-constrained project scheduling: a heuristic for the multi-mode case. OR Spectr 23(3):335–357CrossRefGoogle Scholar
  20. Jungnickel D (2005) Graphs, networks, and algorithms, 2nd edn. Springer, BerlinGoogle Scholar
  21. Klein R, Scholl A (1999) Computing lower bounds by destructive improvement: an application to resource-constrained project scheduling. Eur J Oper Res 112(2):322–346CrossRefGoogle Scholar
  22. Laborie P (2003) Algorithms for propagating resource constraints in AI planning and scheduling: existing approaches and new results. Artif Intell 143(2):151–188CrossRefGoogle Scholar
  23. Möhring RH, Schulz AS, Stork F, Uetz M (1999) Resource-constrained project scheduling: computing lower bounds by solving minimum cut problems. In: Nešetřil J (ed) Algorithms - ESA’99. Lecture notes in computer science, vol 1643. Springer, Berlin, pp 139–150CrossRefGoogle Scholar
  24. Neumann K, Morlock M (2002) Operations research, 2nd edn. Hanser, MünchenGoogle Scholar
  25. Neumann K, Schwindt C (2002) Project scheduling with inventory constraints. Math Meth Oper Res 56(3):513–533CrossRefGoogle Scholar
  26. Neumann K, Schwindt C, Zimmermann J (2003) Project scheduling with time windows and scarce resources, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  27. Schwindt C (1998b) Verfahren zur Lösung des ressourcenbeschränkten Projektdauerminimierungsproblems mit planungsabhängigen Zeitfenstern. Shaker, AachenGoogle Scholar
  28. Schwindt C (2005) Resource allocation in project management. Springer, BerlinCrossRefGoogle Scholar
  29. Sprecher A, Kolisch R, Drexl A (1995) Semi-active, active, and non-delay schedules for the resource-constrained project scheduling problem. Eur J Oper Res 80(1):94–102CrossRefGoogle Scholar
  30. Villeneuve D, Desaulniers G (2005) The shortest path problem with forbidden paths. Eur J Oper Res 165(1):97–107CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Illa Weiss
    • 1
  1. 1.Clausthal-ZellerfeldGermany

Personalised recommendations