Skip to main content

Rho-Tau Embedding of Statistical Models

  • Chapter
  • First Online:
Geometric Structures of Information

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Two strictly increasing functions \(\rho \) and \(\tau \) determine the rho-tau embedding of a statistical model. The Riemannian metric tensor is derived from the rho-tau divergence. It depends only on the product \(\rho '\tau '\) of the derivatives of \(\rho \) and \(\tau \). Hence, once the metric tensor is fixed still some freedom is left to manipulate the geometry. We call this the gauge freedom. A sufficient condition for the existence of a dually flat geometry is established. It is shown that, if the coordinates of a parametric model are affine then the rho-tau metric tensor is Hessian and the dual coordinates are affine as well. We illustrate our approach using models belonging to deformed exponential families, and give a simple and precise characterization for the rho-tau metric to become Hessian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amari, S., Nagaoka, H.: Methods of Information Geometry. AMS Monograph. Oxford University Press, Oxford (2000). (Originally published in Japanese by Iwanami Shoten, Tokyo, Japan, 1993.)

    MATH  Google Scholar 

  2. Ay, N., Jost, J., LÊ, H.V., Schwachhöfer, L.: Information Geometry. Springer, Berlin (2017)

    Book  Google Scholar 

  3. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Phys. 70, 200–217 (1967)

    Article  Google Scholar 

  4. Eguchi, S.: Second order efficiency of minimum contrast estimators in a curved exponential family. Ann. Stat. 11, 793–803 (1983)

    Article  MathSciNet  Google Scholar 

  5. Eguchi, S.: A differential geometric approach to statistical inference on the basis of contrast functionals. Hiroshima Math. J. 15, 341–391 (1985)

    MathSciNet  MATH  Google Scholar 

  6. Eguchi, S.: Information geometry and statistical pattern recognition. Sugaku Expositions (Amer. Math. Soc.) 19, 197–216 (2006). (originally Sūgaku 56 (2004) 380 in Japanese)

    MATH  Google Scholar 

  7. Lauritzen, S.: Statistical manifolds. In: Amari, S., Barndorff-Nielsen, O., Kass, R., Lauritzen, S., Rao, C.R. (eds.) Differential Geometry in Statistical Inference. Lecture Notes, vol. 10, pp. 163–216. IMS, Hayward (1987)

    Google Scholar 

  8. Lê, H.V.: Statistical manifolds are statistical models. J. Geom. 84, 83–93 (2005)

    Article  MathSciNet  Google Scholar 

  9. Montrucchio, L., Pistone, G.: Deformed exponential bundle: the linear growth case. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2017 LNCS Proceedings of Geometric Science of Information, pp. 239–246. Springer, Berlin (2017)

    Google Scholar 

  10. Naudts, J.: Estimators, escort probabilities, and phi-exponential families in statistical physics. J. Ineq. Pure Appl. Math. 5, 102 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Naudts, J., Zhang, J.: Information geometry under monotone embedding. Part II: Geometry. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2017 LNCS Proceedings of Geometric Science of Information, pp. 215–222. Springer, Berlin (2017)

    Google Scholar 

  12. Naudts, J., Zhang J.: Information geometry under monotone embedding. Inf. Geom. (under review)

    Google Scholar 

  13. Newton, N.J.: An infinite-dimensional statistical manifold modeled on Hilbert space. J. Funct. Anal. 263, 1661–1681 (2012)

    Article  MathSciNet  Google Scholar 

  14. Pistone, G., Sempi, C.: An infinite dimensional geometric structure on the space of all the probability measures equivalent to a given one. Ann. Stat. 33, 1543–1561 (1995)

    Article  MathSciNet  Google Scholar 

  15. Pistone, G., Rogantin, M.P.: The exponential statistical manifold: mean parameters, orthogonality and space transformations. Bernoulli 5, 721–760 (1999)

    Article  MathSciNet  Google Scholar 

  16. Pistone, G.: \(\kappa \)-exponential models from the geometrical viewpoint. Eur. Phys. J. B 70, 29–37 (2009)

    Article  Google Scholar 

  17. Shima, H.: The Geometry of Hessian Structures. World Scientific, Singapore (2007)

    Book  Google Scholar 

  18. Vigelis, R.F., Cavalcante, C.C.: On \(\phi \)-families of probability distributions. J. Theor. Probab. 26, 870–884 (2013)

    Article  MathSciNet  Google Scholar 

  19. Zhang, J.: Divergence function, duality, and convex analysis. Neural Comput. 16, 159–195 (2004)

    Article  Google Scholar 

  20. Zhang, J.: Referential duality and representational duality on statistical manifolds. In: Proceedings of the Second International Symposium on Information Geometry and Its Applications, Tokyo, Japan, pp. 58–67 (2005)

    Google Scholar 

  21. Zhang, J.: Nonparametric information geometry: from divergence function to referential-representational biduality on statistical manifolds. Entropy 15, 1 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Zhang, J.: On monotone embedding in information geometry. Entropy 17, 4485–4499 (2015)

    Article  Google Scholar 

  23. Zhang, J., Naudts, J.: Information geometry under monotone embedding. Part I: Divergence functions. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2017 LNCS Proceedings of Geometric Science of Information, pp. 205–214. Springer, Berlin (2017)

    Google Scholar 

Download references

Acknowledgements

The research reported here is supported by DARPA/ARO Grant W911NF-16-1-0383 (PI: Jun Zhang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Naudts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naudts, J., Zhang, J. (2019). Rho-Tau Embedding of Statistical Models. In: Nielsen, F. (eds) Geometric Structures of Information. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-02520-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02520-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02519-9

  • Online ISBN: 978-3-030-02520-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics