Science Mapping Analysis Software Tools: A Review

Part of the Springer Handbooks book series (SHB)


Scientific articles are one of the most important types of output of a researcher. In that sense, bibliometrics is an essential tool for assessing and analyzing academic research output contributing to the progress of science in many different ways. It provides objective criteria to assess research developed by researchers, being increasingly valued as a tool for measuring scholarly quality and productivity. Science mapping is a bibliometric tool to analyze and mine scientific output. The aim of this chapter is to present a thorough review of science mapping software tools, showing strengths and limitations. Six software tools that meet the criteria of being free, full, and allowing the whole analysis to be performed are analyzed:
  • BibExcel

  • CiteSpace II

  • CitNetExplorer

  • SciMAT

  • Sci\({}^{2}\) Tool

  • VOSviewer.

This analysis describes aspects related to data processing, analysis options, and visualization. The particular properties of each tool that allows us to analyze the science are presented, the choice of a particular tool one depends on the type of actor to be analyzed and the output expected.

science mapping analysis SMA social networks bibliometrics software review 



The authors would like to acknowledge FEDER funds under grants TIN2013-40658-P and TIN2016-75850-R and also the financial support from the University of Cádiz, Project PR2016-067.


  1. D. Price: Little Science, Big Science (Univ. Press, New York, Columbia 1963)CrossRefGoogle Scholar
  2. M.A. Martinez, M.J. Cobo, M. Herrera, E. Herrera-Viedma: Analyzing the scientific evolution of social work using science mapping, Res. Soc. Work Pract. 25(2), 257–277 (2015)CrossRefGoogle Scholar
  3. J.A. Moral-Munoz, M.J. Cobo, F. Chiclana, A. Collop, E. Herrera-Viedma: Analyzing highly cited papers in intelligent transportation systems, IEEE Trans. Intell. Transp. Syst. 17(4), 993–1001 (2016)CrossRefGoogle Scholar
  4. H.F. Moed, R.E. De Bruin, T.N. van Leeuwen: New bibliometric tools for the assessment of national research performance: Database description, overview of indicators and first applications, Scientometrics 33(3), 381–422 (1995)CrossRefGoogle Scholar
  5. M.A. Martinez, M. Herrera, J. López-Gijón, E. Herrera-Viedma: H-Classics: Characterizing the concept of citation classics through H-index, Scientometrics 98(3), 1971–1983 (2014)CrossRefGoogle Scholar
  6. M. Callon, J.P. Courtial, F. Laville: Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemistry, Scientometrics 22(1), 155–205 (1991)CrossRefGoogle Scholar
  7. N. Coulter, I. Monarch, S. Konda: Software engineering as seen through its research literature: A study in co-word analysis, J. Am. Soc. Inf. Sci. 49(13), 1206–1223 (1998)CrossRefGoogle Scholar
  8. M. Henderson, S. Shurville, K. Fernstrom: The quantitative crunch: The impact of bibliometric research quality assessment exercises on academic development at small conferences, Campus-Wide Inf. Syst. 26, 149–167 (2009)CrossRefGoogle Scholar
  9. H.F. Moed: New developments in the use of citation analysis in research evaluation, Arch. Immunol. Ther. Exp. 57(1), 13–18 (2009)CrossRefGoogle Scholar
  10. M.J. Cobo, A.G. López-Herrera, E. Herrera-Viedma, F. Herrera: An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field, J. Infometr. 5(1), 146–166 (2011)CrossRefGoogle Scholar
  11. J. Hirsch: An index to quantify an individuals scientific research output, Proc. Natl. Acad. Sci. 102, 15572–16569 (2005)CrossRefGoogle Scholar
  12. S. Alonso, F.J. Cabrerizo, E. Herrera-Viedma, F. Herrera: Hg-index: A new index to characterize the scientific output of research based on the h- and g-indexes, Scientometrics 82(2), 391–400 (2010)CrossRefGoogle Scholar
  13. K. Börner, C. Chen, K. Boyack: Visualizing knowledge domains, Annu. Rev. Inf. Sci. Technol. 37(1), 179–255 (2003)CrossRefGoogle Scholar
  14. S. Morris: B. Van Der Veer Martens: Mapping research specialities, Annu. Rev. Inf. Sci. Technol. 42(1), 213–295 (2008)CrossRefGoogle Scholar
  15. E.C.M. Noyons, H.F. Moed, M. Luwel: Combining mapping and citation analysis for evaluative bibliometric purposes: A bibliometric study, J. Am. Soc. Inf. Sci. 50(2), 115–131 (1999)CrossRefGoogle Scholar
  16. H. Small: Update on science mapping: Creating large document spaces, Scientometrics 38(2), 275–293 (1997)CrossRefGoogle Scholar
  17. M.J. Cobo, A.G. López-Herrera, E. Herrera-Viedma, F. Herrera: Science mapping software tools: Review, analysis, and cooperative study among tools, J. Assoc. Inf. Sci. Technol. 62(7), 1382–1402 (2011)CrossRefGoogle Scholar
  18. V. Batagelj, A. Mrvar: Pajek–Program for large network analysis, Connections 21(2), 47–57 (1998)Google Scholar
  19. M. Bastian, S. Heymann, M. Jacomy: Gephi: An open source software for exploring and manipulating networks. In: Proc. Int. AAAI Conf. Weblogs Soc. Media (2009)Google Scholar
  20. M. Aria, C. Cuccurullo: Bibliometrix, (Univ. of Naples Federico II, 2016)
  21. M. Gagolewski: Bibliometric impact assessment with R and the CITAN package, J. Informetr. 5(4), 678–692 (2011)CrossRefGoogle Scholar
  22. A. Uddin, J. Bhoosreddy, M.M. Tiwari, V.K. Singh: A sciento-text framework to characterize research strength of institutions at fine-grained thematic area level, Scientometrics 106(3), 1135–1150 (2016)CrossRefGoogle Scholar
  23. S. Grauwin: BiblioTools, (Univ. of Lyon, 2014)
  24. M.J. Cobo, A.G. López-Herrera, E. Herrera-Viedma: A relational database model for science mapping analysis, Acta Polytech. Hung. 12(6), 43–62 (2015)Google Scholar
  25. N. Mallig: A relational database for bibliometric analysis, J. Informetr. 4(4), 564–580 (2010)CrossRefGoogle Scholar
  26. V. Gómez-Jáuregui, C. Gómez-Jáuregui, C. Manchado, C. Otero: Information management and improvement of citation indices, Int. J. Inf. Manag. 34(2), 257–271 (2014)CrossRefGoogle Scholar
  27. A.L. Porter, S.W. Cunningham: Tech Mining: Exploiting New Technologies for Competitive Advantage (Wiley, Hoboken 2004)CrossRefGoogle Scholar
  28. A. Thor, W. Marx, L. Leydesdorff, L. Bornmann: Introducing cited references explorer (CRExplorer): A program for reference publication year spectroscopy with cited references standardization, J. Informetr. 10(2), 503–515 (2016)CrossRefGoogle Scholar
  29. L. Leydesdorff, L. Bornmann, W. Marx, S. Milojević: Referenced publication years spectroscopy applied to iMetrics: Scientometrics, Journal of Informetrics, and a relevant subset of JASIST, J. Informetr. 8(1), 162–174 (2014)CrossRefGoogle Scholar
  30. N.J. van Eck, L. Waltman: Visualizing Bibliometric Networks (Springer, Cham 2014)Google Scholar
  31. V. Batagelj, M. Cerinšek: On bibliographic networks, Scientometrics 96(3), 845–864 (2013)CrossRefGoogle Scholar
  32. H. Small: Co-citation in the scientific literature: A new measure of the relationship between two documents, J. Am. Soc. Inf. Sci. 24(4), 265–269 (1973)CrossRefGoogle Scholar
  33. M.M. Kessler: Bibliographic coupling between scientific papers, Am. Doc. 14(1), 10–25 (1963)CrossRefGoogle Scholar
  34. W. Gänzel: National characteristics in international scientific co-authorship relations, Scientometrics 51(1), 69–115 (2001)CrossRefGoogle Scholar
  35. M. Callon, J.P. Courtial, W.A. Turner, S. Bauin: From translation to problematic networks: An introduction to co-word analysis, Soc. Sci. Inf. 22(2), 191–235 (1983)CrossRefGoogle Scholar
  36. O. Persson, R. Danell, J.W. Schneider: Celebrating Scholarly Communication Studies: A Festschrift for Olle Persson at his 60th Birthday, Vol. 5 (International Society for Scientometrics and Informetrics, Leuven 2009) pp. 9–24Google Scholar
  37. C. Chen: CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature, J. Am. Soc. Inf. Sci. Technol. 57(3), 359–377 (2006)CrossRefGoogle Scholar
  38. N.J. van Eck, L. Waltman: CitNetExplorer: A new software tool for analyzing and visualizing citation networks, J. Informetr. 8(4), 802–823 (2014)CrossRefGoogle Scholar
  39. M.J. Cobo, A.G. López-Herrera, E. Herrera-Viedma, F. Herrera: SciMAT: A new science mapping analysis software tool, J. Am. Soc. Inf. Sci. Technol. 3(8), 1609–1630 (2012)CrossRefGoogle Scholar
  40. Sci2 Team: Science of Science (Sci2) Tool, (2009) Indiana University and SciTech Strategies
  41. N.J. van Eck, L. Waltman: Software survey: VOSviewer, a computer program for bibliometric mapping, Scientometrics 84(2), 523–553 (2010)CrossRefGoogle Scholar
  42. S.P. Borgatti, M.G. Everett, L.C. Freeman: UCINET 6 for Windows: Software for social network analysis, (Analytic Technologies, Harvard 2002)Google Scholar
  43. C. Liu, Q. Gui: Mapping intellectual structures and dynamics of transport geography research: A scientometric overview from 1982 to 2014, Scientometrics 109(1), 159–184 (2016)CrossRefGoogle Scholar
  44. R. Eito-Brun, M.L. Rodriguez: 50 years of space research in Europe: A bibliometric profile of the European Space Agency (ESA), Scientometrics 109(1), 1–26 (2016)CrossRefGoogle Scholar
  45. F. Quevedo-Silva, E.B. Santos, M.M. Brandão, L. Vils: Estudo Bibliométrico: Orientações sobre sua Aplicação, Rev. Bras. Mark. 15(02), 246–262 (2016)CrossRefGoogle Scholar
  46. S. Miguel: E. Tannuri de Oliveira, M. Cabrini Grácio: Scientific production on open access: A worldwide bibliometric analysis in the academic and scientific context, Publications 4(1), 1 (2016)CrossRefGoogle Scholar
  47. X.Y. Zhao, L. Sheng, T.X. Diao, Y. Zhang, L. Wang, Z. Yanjun: Knowledge mapping analysis of ebola research, Bratisl. Med. J. 116(12), 729–734 (2015)CrossRefGoogle Scholar
  48. R.N. Machado, B. Vargas-Quesada, J. Leta: Intellectual structure in stem cell research: Exploring Brazilian scientific articles from 2001 to 2010, Scientometrics 106(2), 525–537 (2016)CrossRefGoogle Scholar
  49. G. Salton, M.J. McGill: Introduction to Modern Information Retrieval (McGraw-Hill, New York 1983)Google Scholar
  50. P. Jaccard: Distribution de la Flore Alpine: dans le Bassin des dranses et dans quelques régions voisines, Bull. Soc. Vaud. Sci. Nat. 37(140), 241–272 (1901)Google Scholar
  51. G. Vladutz, J. Cook: Bibliographic coupling and subject relatedness, Proc. Am. Soc. Inf. Sci. 21, 204–207 (1984)Google Scholar
  52. L. Leydesdorff, O. Persson: Mapping the geography of science: Distribution patterns and networks of relations among cities and institutes, J. Am. Soc. Inf. Sci. Technol. 61(8), 1622–1634 (2010)Google Scholar
  53. V. Batagelj, A. Mrvar: Pajek–Analysis and Visualization of Large Networks (Springer, Berlin, Heidelberg 2004)CrossRefGoogle Scholar
  54. B. Liu, L. Zhang, X. Wang: Scientometric profile of global rice research during 1985–2014, Curr. Sci. 112(5), 1003–1011 (2017)CrossRefGoogle Scholar
  55. J. Zhu, W. Hua: Visualizing the knowledge domain of sustainable development research between 1987 and 2015: A bibliometric analysis, Scientometrics 110(2), 893–914 (2017)CrossRefGoogle Scholar
  56. C. Xiang, Y. Wang, H. Liu: A scientometrics review on nonpoint source pollution research, Ecol. Eng. 99, 400–408 (2017)CrossRefGoogle Scholar
  57. Q. Zhao, W. Zhang, R. Wang, Y. Wang, D. Ouyang: Research advances in molecular modeling in cyclodextrins, Curr. Pharm. Des. 23(3), 522–531 (2017)Google Scholar
  58. X. Li, E. Ma, H. Qu: Knowledge mapping of hospitality research—A visual analysis using CiteSpace, Int. J. Hosp. Manag. 60, 77–93 (2017)CrossRefGoogle Scholar
  59. R.W. Schvaneveldt, F.T. Durso, D.W. Dearholt: Network Structures in Proximity Data, Psychology of Learning and Motivation (Academic Press, New York 1989)Google Scholar
  60. C.M. Morel, S.J. Serruya, G.O. Penna, R. Guimarães: Co-authorship network analysis: A powerful tool for strategic planning of research, development and capacity building programs on neglected diseases, PLoS Negl. Trop. Dis. 3(8), e501 (2009)CrossRefGoogle Scholar
  61. H.P.F. Peters, A.F.J. van Raan: Co-word-based science maps of chemical engineering. Part I: Representations by direct multidimensional scaling, Res. Policy 22(1), 23–45 (1993)CrossRefGoogle Scholar
  62. Q. He: Knowledge discovery through co-word analysis, Libr. Trends 48(1), 133–159 (1999)Google Scholar
  63. H. Small: A co-citation model of a scientific specialty: A longitudinal study of collagen research, Soc. Stud. Sci. 7, 139–166 (1977)CrossRefGoogle Scholar
  64. H. Small, M.E.D. Koenig: Journal clustering using a bibliographic coupling method, Inf. Process. Manag. 13(5), 277–288 (1977)CrossRefGoogle Scholar
  65. B. Jarneving: Bibliographic coupling and its application to research-front and other core documents, J. Informetr. 1(4), 287–307 (2007)CrossRefGoogle Scholar
  66. L.R. Dice: Measures of the amount of ecologic association between species, Ecology 26(3), 297–302 (1945)CrossRefGoogle Scholar
  67. J. Kleinberg: Bursty and hierarchical structure in streams, Data Min. Knowl. Discov. 7(4), 373–397 (2003)CrossRefGoogle Scholar
  68. L.C. Freeman: Centrality in social networks conceptual clarification, Soc. Netw. 1(3), 215–239 (1978)CrossRefGoogle Scholar
  69. N. Bernabò, L. Greco, M. Mattioli, B. Barboni: A scientometric analysis of reproductive medicine, Scientometrics 109(1), 103–120 (2016)CrossRefGoogle Scholar
  70. E. Garfield, A.I. Pudovkin, V.S. Istomin: Why do we need algorithmic historiography?, J. Am. Soc. Inf. Sci. Technol. 54(5), 400–412 (2003)CrossRefGoogle Scholar
  71. F. Wu, R. Li, L. Huang, H. Miao, X. Li: Theme evolution analysis of electrochemical energy storage research based on CitNetExplorer, Scientometrics 110(1), 113–139 (2017)CrossRefGoogle Scholar
  72. B. Elango: Scientometric analysis of nature nanotechnology, Libr. Hi Tech News 34(1), 23–30 (2017)CrossRefGoogle Scholar
  73. S. Kusumastuti, M.G.M. Derks, S. Tellier, E. Di Nucci, R. Lund, E.L. Mortensen, R.G.J. Westendorp: Successful ageing: A study of the literature using citation network analysis, Maturitas 93, 4–12 (2016)CrossRefGoogle Scholar
  74. B. Elango, L. Bornmann, S. Shankar: Study of citation networks in tribology research, Collnet J. Scientometr. Inf. Manag. 10(1), 71–96 (2016)Google Scholar
  75. A. Avila-Robinson, N. Islam: Evolution of emerging iPS cell-based therapies for age-related macular degeneration (AMD). In: 2015 Portland Int. Conf. Manag. Eng. Technol. (PICMET) (2015) pp. 495–510CrossRefGoogle Scholar
  76. L. Waltman, N.J. Van Eck: A smart local moving algorithm for large-scale modularity-based community detection, Eur. Phys. J. B 86(11), 471 (2013)CrossRefGoogle Scholar
  77. S. Seidman: Network structure and minimum degree, Soc. Netw. 5(3), 269–287 (1983)CrossRefGoogle Scholar
  78. R. Tamassia: Handbook of Graph Drawing and Visualization (CRC, Boca Raton 2014)Google Scholar
  79. N.J. van Eck, L. Waltman, R. Dekker, J. van den Berg: A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS, J. Assoc. Inf. Sci. Technol. 61(12), 2405–2416 (2010)CrossRefGoogle Scholar
  80. S. Alonso, F.J. Cabrerizo, E. Herrera-Viedma, F. Herrera: H-index: A review focused in its variants, computation and standardization for different scientific fields, J. Informetr. 3(4), 273–289 (2009)CrossRefGoogle Scholar
  81. L. Egghe: Theory and practise of the G-index, Scientometrics 69(1), 131–152 (2006)CrossRefGoogle Scholar
  82. F.J. Cabrerizo, S. Alonso, E. Herrera-Viedma, F. Herrera: q2-Index: Quantitative and qualitative evaluation based on the number and impact of papers in the Hirsch core, J. Informetr. 4(1), 23–28 (2010)CrossRefGoogle Scholar
  83. M.A. Martinez, F.L. Rodriguez-Fernández, M.J. Cobo, E. Herrera-Viedma: What is happening in social work according the Web of Science?, Cuad. Trab. Soc. 30(1), 125–134 (2017)Google Scholar
  84. M.A. Martinez, M.J. Cobo, M. Herrera, E. Herrera-Viedma: Analyzing the scientific evolution of social work using science mapping, Res. Soc. Work Pract. 25(2), 257–277 (2015)CrossRefGoogle Scholar
  85. M. Lubicz: Applications of operations research and intelligent techniques in the health systems: a bibliometric analysis. In: Inf. Syst. Archit. Technol. Proc. 37th Int. Conf. Inf. Syst. Archit. Technol. (ISAT 2016), Vol. 523 (Springer, Cham 2017)Google Scholar
  86. R. Heradio, H. Pérez-Morago, D. Fernández-Amoros, F.J. Cabrerizo, E. Herrera-Viedma: A bibliometric analysis of 20 years of research on software product lines, Inf. Softw. Technol. 72, 1–15 (2016)CrossRefGoogle Scholar
  87. A. Rodriguez-Ledesma, M.J. Cobo, C. López-Pujalte, E. Herrera-Viedma: An overview of animal science research 1945–2011 through science mapping analysis, J. Animal Breed. Genet. 132(6), 475–497 (2015)CrossRefGoogle Scholar
  88. M.J. Cobo, M.A. Martinez, M. Gutiérrez-Salcedo, H. Fujita, E. Herrera-Viedma: 25 years at knowledge-based systems: A bibliometric analysis, Knowl. Based Syst. 80, 3–13 (2015)CrossRefGoogle Scholar
  89. E.M. Murgado-Armenteros, M. Gutiérrez-Salcedo, F.J. Torres-Ruiz, M.J. Cobo: Analysing the conceptual evolution of qualitative marketing research through science mapping analysis, Scientometrics 102(1), 519–557 (2015)CrossRefGoogle Scholar
  90. J.A. Moral-Muñoz, M.J. Cobo, E. Peis, M. Arroyo-Morales, E. Herrera-Viedma: Analyzing the research in integrative and complementary medicine by means of science mapping, Complement. Ther. Med. 22(2), 409–418 (2014)CrossRefGoogle Scholar
  91. M.J. Cobo, F. Chiclana, A. Collop, J. Oña, E. Herrera-Viedma: A bibliometric analysis of the intelligent transportation systems research based on science mapping, IEEE Trans. Intell. Transp. Syst. 15(2), 901–908 (2014)CrossRefGoogle Scholar
  92. M.J. Cobo, A. López-Herrera, F. Herrera, E. Herrera-Viedma: A note on the ITS topicevolution in the period 2000–2009 at T-ITS, IEEE Trans. Intell. Transp. Syst. 13, 413–420 (2012)CrossRefGoogle Scholar
  93. H. Small, E. Sweeney: Clustering the science citation index using co-citations, Scientometrics 7(3), 391–409 (1985)CrossRefGoogle Scholar
  94. R.P. van der Have, L. Rubalcaba: Social innovation research: An emerging area of innovation studies?, Res. Policy 45(9), 1923–1935 (2016)CrossRefGoogle Scholar
  95. G. Nelhans, D.G. Lorentzen: Twitter conversation patterns related to research papers, Inf. Res. 21(2), 41 (2016)Google Scholar
  96. S. Nawaz, J. Strobel: Authorship and content analysis of engineering education research: A case study, Int. J. Eng. Pedagogy 6(2), 39–51 (2016)CrossRefGoogle Scholar
  97. J.A. Comins, T.W. Hussey: Detecting seminal research contributions to the development and use of the global positioning system by reference publication year spectroscopy, Scientometrics 104(2), 575–580 (2015)CrossRefGoogle Scholar
  98. Z. Liu, Y. Yin, W. Liu, M. Dunford: Visualizing the intellectual structure and evolution of innovation systems research: A bibliometric analysis, Scientometrics 103(1), 135–158 (2015)CrossRefGoogle Scholar
  99. N. Olson, J.M. Nolin, G. Nelhans: Semantic web, ubiquitous computing, or internet of things? A macro-analysis of scholarly publications, J. Doc. 71(5), 884–916 (2015)CrossRefGoogle Scholar
  100. J. Pollack, D. Adler: Emergent trends and passing fads in project management research: A scientometric analysis of changes in the field, Int. J. Proj. Manag. 33(1), 236–248 (2015)CrossRefGoogle Scholar
  101. K. Boyack, K. Börner, R. Klavans: Mapping the structure and evolution of chemistry research, Scientometrics 79(1), 45–60 (2008)CrossRefGoogle Scholar
  102. M. Olczyk: Bibliometric approach to tracking the concept of international competitiveness, J. Bus. Econ. Manag. 17(6), 945–959 (2016)CrossRefGoogle Scholar
  103. R.T. Li, K.A. Khor, L.G. Yu: Identifying indicators of progress in thermal spray research using bibliometrics analysis, J. Therm. Spray Technol. 25(8), 1–8 (2016)Google Scholar
  104. Y. Wang, X. Zhai, C. Liu, N. Wang, Y. Wang: Trends of triple negative breast cancer research (2007–2015), Medicine 46, 5427 (2016)CrossRefGoogle Scholar
  105. O. Tabatabaei-Malazy, A. Ramezani, R. Atlasi, B. Larijani, M. Abdollahi: Scientometric study of academic publications on antioxidative herbal medicines in type 2 diabetes mellitus, J. Diabetes Metab. Disord. 15(1), 1–8 (2016)CrossRefGoogle Scholar
  106. W.M. Sweileh, S.W. Al-Jabi, A.F. Sawalha, S.H. Zyoud: Bibliometric profile of the global scientific research on autism spectrum disorders, SpringerPlus 5(1), 1480 (2016)CrossRefGoogle Scholar
  107. W.M. Sweileh, N.Y. Shraim, S.W. Al-Jabi, A.F. Sawalha, B. Rahhal, R.A. Khayyat, S.H. Zyoud: Assessing worldwide research activity on probiotics in pediatrics using Scopus database: 1994–2014, World Allergy Organ. J. 9(1), 25 (2016)CrossRefGoogle Scholar
  108. Y. Wang, Q. Wang, R. Zhu, C. Yang, Z. Chen, Y. Bai, M. Li, X. Zhai: Trends of spinal tuberculosis research (1994–2015), Medicine 95(38), e4923 (2016)CrossRefGoogle Scholar
  109. S. Bazm, S.M. Kalantar, M. Mirzaei: Bibliometric mapping and clustering analysis of Iranian papers on reproductive medicine in Scopus database (2010–2014), Iran. J. Reprod. Med. 14(6), 371–382 (2016)Google Scholar
  110. E.M. Gheno, D.B. Rosemberg, D.O. Souza, L. Calabró: Zebrafish in Brazilian science: Scientific production, impact, and collaboration, Zebrafish 13(3), 1–9 (2016)CrossRefGoogle Scholar
  111. O. Tabatabaei-Malazy, R. Atlasi, B. Larijani, M. Abdollahi: Trends in publication on evidence-based antioxidative herbal medicines in management of diabetic nephropathy, J. Diabetes Metab. Disord. 15(1), 1 (2015)CrossRefGoogle Scholar
  112. J. Li, A. Hale: Output distributions and topic maps of safety related journals, Saf. Sci. 82, 236–244 (2016)CrossRefGoogle Scholar
  113. P. Vezyridis, S. Timmons: Evolution of primary care databases in UK: A scientometric analysis of research output, BMJ Open 6(10), e012785 (2016)CrossRefGoogle Scholar
  114. A. Zaharia, G. Popescu, L.O. Vreja: Energy scientific production in the context of the green development models, Econ. Comput. Econ. Cybern. Stud. Res. 50(4), 151–168 (2016)Google Scholar
  115. L. Waltman, N.J. van Eck, E.C.M. Noyons: A unified approach to mapping and clustering of bibliometric networks, J. Informetr. 4(4), 629–635 (2010)CrossRefGoogle Scholar
  116. N.J. van Eck, L. Waltman: Bibliometric mapping of the computational intelligence field, Int. J. Uncertain., Fuzziness Knowl. Based Syst. 15(5), 625–645 (2007)CrossRefGoogle Scholar
  117. A. Rip, J.P. Courtial: Co-word maps of biotechnology: An example of cognitive scientometrics, Scientometrics 6(6), 381–400 (1984)CrossRefGoogle Scholar
  118. M. Zitt, E. Bassecoulard, Y. Okubo: Shadows of the past in international cooperation: Collaboration profiles or the top five producers of science, Scientometrics 47(3), 627–657 (2000)CrossRefGoogle Scholar
  119. I. Borg, P.J.F. Groenen: Modern Multidimensional Scaling: Theory and Applications (Springer, New York 2005)Google Scholar
  120. G.S. Davidson, B.N. Wylie, K.W. Boyack: Cluster stability and the use of noise in interpretation of clustering. In: Proc. IEEE Symp. Inf. Vis. 2001 (INFOVIS'01), Vol. 23 (2001)Google Scholar
  121. R. Klavans, K.W. Boyack: Identifying a better measure of relatedness for mapping science, J. Am. Soc. Inf. Sci. Technol. 57(2), 251–263 (2006)CrossRefGoogle Scholar
  122. A. Kopcsa, E. Schiebel: Science and technology mapping: A new iteration model for representing multidimensional relationships, J. Am. Soc. Inf. Sci. 49(1), 7–17 (1998)CrossRefGoogle Scholar
  123. N.J. Van Eck, L. Waltman: VOSviewer Manual (Univ. Leiden, Leiden 2013) pp. 1–28Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Nursing and PhysiotherapyUniversity of CádizCádizSpain
  2. 2.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain
  3. 3.Department of Computer Science and EngineeringUniversity of CádizAlgecirasSpain

Personalised recommendations