Skip to main content

Fast Computations on Ordered Nominal Sets

  • Conference paper
  • First Online:
Theoretical Aspects of Computing – ICTAC 2018 (ICTAC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11187))

Included in the following conference series:

  • 445 Accesses

Abstract

We show how to compute efficiently with nominal sets over the total order symmetry, by developing a direct representation of such nominal sets and basic constructions thereon. In contrast to previous approaches, we work directly at the level of orbits, which allows for an accurate complexity analysis. The approach is implemented as the library Ons (Ordered Nominal Sets).

Our main motivation is nominal automata, which are models for recognising languages over infinite alphabets. We evaluate Ons in two applications: minimisation of automata and active automata learning. In both cases, Ons is competitive compared to existing implementations and outperforms them for certain classes of inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Other implementations of nominal techniques that are less directly related to our setting (Mihda, Fresh OCaml, and Nominal Isabelle) are discussed in Sect. 6.

  2. 2.

    Ons can be found at https://github.com/davidv1992/ONS.

  3. 3.

    The G-action on words is defined point-wise: \((w_1 \ldots w_n) g = (w_1 g) \ldots (w_n g)\).

  4. 4.

    Abstractly, an automaton is minimal if it has no proper quotients. Minimal deterministic automata are unique up to isomorphism.

  5. 5.

    See https://joshuamoerman.nl/papers/2017/17popl-learning-nominal-automata.html for a sketch of the polynomial algorithm.

  6. 6.

    Can be found on https://github.com/eryxcc/lois/blob/master/tests/learning.cpp.

References

  1. Aarts, F., Fiterau-Brostean, P., Kuppens, H., Vaandrager, F.: Learning register automata with fresh value generation. In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp. 165–183. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9_11

    Chapter  Google Scholar 

  2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

    Article  MathSciNet  MATH  Google Scholar 

  3. Bojańczyk, M., Braud, L., Klin, B., Lasota, S.: Towards nominal computation. In: Proceedings of 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012, Philadelphia, PA, USA, pp. 401–412. ACM Press, New York (2012). https://doi.org/10.1145/2103656.2103704

  4. Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Log. Methods Comput. Sci. 10(3), Article no. 4 (2014). https://doi.org/10.2168/lmcs-10(3:4)2014

  5. Bojańczyk, M., Lasota, S.: A machine-independent characterization of timed languages. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7392, pp. 92–103. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31585-5_12

    Chapter  MATH  Google Scholar 

  6. Bollig, B., Habermehl, P., Leucker, M., Monmege, B.: A fresh approach to learning register automata. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 118–130. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38771-5_12

    Chapter  Google Scholar 

  7. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite state machines. Formal Asp. Comput. 28(2), 233–263 (2016). https://doi.org/10.1007/s00165-016-0355-5

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciancia, V., Kurz, A., Montanari, U.: Families of symmetries as efficient models of resource binding. Electron. Notes Theor. Comput. Sci. 264(2), 63–81 (2010). https://doi.org/10.1016/j.entcs.2010.07.014

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciancia, V., Montanari, U.: Symmetries, local names and dynamic (de)-allocation of names. Inf. Comput. 208(12), 1349–1367 (2010). https://doi.org/10.1016/j.ic.2009.10.007

    Article  MathSciNet  MATH  Google Scholar 

  10. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 47–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_3

    Chapter  Google Scholar 

  11. Drews, S., D’Antoni, L.: Learning symbolic automata. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 173–189. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_10

    Chapter  Google Scholar 

  12. Ferrari, G.L., Montanari, U., Tuosto, E.: Coalgebraic minimization of HD-automata for the \(\pi \)-calculus using polymorphic types. Theor. Comput. Sci. 331(2–3), 325–365 (2005). https://doi.org/10.1016/j.tcs.2004.09.021

    Article  MathSciNet  MATH  Google Scholar 

  13. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_25

    Chapter  Google Scholar 

  14. Gabbay, M., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Asp. Comput. 13(3–5), 341–363 (2002). https://doi.org/10.1007/s001650200016

    Article  MATH  Google Scholar 

  15. Grigore, R., Tzevelekos, N.: History-register automata. Log. Methods Comput. Sci. 12(1), Article no. 7 (2016). https://doi.org/10.2168/lmcs-12(1:7)2016

  16. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2), 329–363 (1994). https://doi.org/10.1016/0304-3975(94)90242-9

    Article  MathSciNet  MATH  Google Scholar 

  17. Klin, B., Szynwelski, M.: SMT solving for functional programming over infinite structures. In: Atkey, R., Krishnaswami, N.R. (eds.) Proc. of 6th Workshop on Mathematically Structured Functional Programming, MSFP 2016 (Eindhoven, Apr. 2016). Electronic Proceedings in Theoretical Computer Science, vol. 207, pp. 57–75. Open Publishing Association, Sydney (2016). https://doi.org/10.4204/eptcs.207.3

    Article  MathSciNet  Google Scholar 

  18. Kopczynski, E., Toruńczyk, S.: LOIS: an application of SMT solvers. In: King, T., Piskac, R. (eds.) Proceedings of 14th International Workshop on Satisfiability Modulo Theories, SMT 2016, Coimbra, July 2016. CEUR Workshop Proceedings, vol. 1617, pp. 51–60. CEUR-WS.org (2016). http://ceur-ws.org/Vol-1617/paper5.pdf

  19. Kopczynski, E., Toruńczyk, S.: LOIS: syntax and semantics. In: Proceedings of 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, January 2017, pp. 586–598. ACM Press, New York (2017). https://doi.org/10.1145/3009837.3009876

  20. Maler, O., Mens, I.-E.: A generic algorithm for learning symbolic automata from membership queries. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 146–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9_8

    Chapter  Google Scholar 

  21. Moerman, J., Sammartino, M., Silva, A., Klin, B., Szynwelski, M.: Learning nominal automata. In: Proceedings of 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, January 2017, pp. 613–625. ACM Press, New York (2017). https://doi.org/10.1145/3009837.3009879

  22. Montanari, U., Pistore, M.: An introduction to history dependent automata. Electron. Notes Theor. Comput. Sci. 10, 170–188 (1998). https://doi.org/10.1016/s1571-0661(05)80696-6

    Article  MathSciNet  MATH  Google Scholar 

  23. Murawski, A.S., Ramsay, S.J., Tzevelekos, N.: Bisimilarity in fresh-register automata. In: Proceedings of 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, July 2015, pp. 156–167. IEEE CS Press (2015). https://doi.org/10.1109/lics.2015.24

  24. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge Tracts in Theoretical Computer Science, vol. 57. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/cbo9781139084673

  25. Pitts, A.M.: Nominal techniques. SIGLOG News 3(1), 57–72 (2016). http://doi.acm.org/10.1145/2893582.2893594

    Google Scholar 

  26. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006). https://doi.org/10.1007/11874683_3

    Chapter  Google Scholar 

  27. Shinwell, M.R., Pitts, A.M.: Fresh Objective Caml user manual. Technical report, Computer Laboratory, University of Cambridge (2005)

    Google Scholar 

  28. Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 38–53. Springer, Heidelberg (2005). https://doi.org/10.1007/11532231_4

    Chapter  Google Scholar 

  29. Vaandrager, F.W.: Model learning. Commun. ACM 60(2), 86–95 (2017). https://doi.org/10.1145/2967606

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank Szymon Toruńczyk and Eryk Kopczyński for their prompt help when using the Lois library. For general comments and suggestions we would like to thank Ugo Montanari and Niels van der Weide. At last, we want to thank the anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jurriaan Rot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Venhoek, D., Moerman, J., Rot, J. (2018). Fast Computations on Ordered Nominal Sets. In: Fischer, B., Uustalu, T. (eds) Theoretical Aspects of Computing – ICTAC 2018. ICTAC 2018. Lecture Notes in Computer Science(), vol 11187. Springer, Cham. https://doi.org/10.1007/978-3-030-02508-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02508-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02507-6

  • Online ISBN: 978-3-030-02508-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics