Skip to main content

Weak Bisimulation Metrics in Models with Nondeterminism and Continuous State Spaces

  • Conference paper
  • First Online:
Theoretical Aspects of Computing – ICTAC 2018 (ICTAC 2018)

Abstract

Bisimulation metrics are used to estimate the behavioural distance between probabilistic systems. They have been defined in discrete and continuous state space models. However, the weak semantics approach, where non-observable actions are abstracted away, has been adopted only in the discrete case. We fill this gap and provide a weak bisimulation metric for models with continuous state spaces. A difficulty is to provide a notion of weak transition leaving from a continuous distribution over states. Our weak bisimulation metric allows for compositional reasoning. Systems at distance zero are equated by a notion of weak bisimulation. We apply our theory in a case study where continuous distributions derive by the evolution of the physical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems. Automatica 44(11), 2724–2734 (2008). https://doi.org/10.1016/j.automatica.2008.03.027

    Article  MathSciNet  MATH  Google Scholar 

  2. Bravetti, M.: Specification and analysis of stochastic real-time systems. Ph.D. thesis, Università di Bologna (2002)

    Google Scholar 

  3. Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov processes. Theor. Comput. Sci. 282(1), 5–32 (2002). https://doi.org/10.1016/s0304-3975(01)00043-3

    Article  MathSciNet  MATH  Google Scholar 

  4. Bujorianu, M.L.: Extended stochastic hybrid systems and their reachability problem. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 234–249. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2_16

    Chapter  MATH  Google Scholar 

  5. Bujorianu, M.L., Lygeros, J., Bujorianu, M.C.: Bisimulation for general stochastic hybrid systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 198–214. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2_13

    Chapter  MATH  Google Scholar 

  6. Cattani, S., Segala, R., Kwiatkowska, M., Norman, G.: Stochastic transition systems for continuous state spaces and non-determinism. In: Sassone, V. (ed.) FoSSaCS 2005. LNCS, vol. 3441, pp. 125–139. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31982-5_8

    Chapter  MATH  Google Scholar 

  7. Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L.: Generalized bisimulation metrics. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 32–46. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6_4

    Chapter  Google Scholar 

  8. Deng, Y., Chothia, T., Palamidessi, C., Pang, J.: Metrics for action-labelled quantitative transition systems. Electron. Notes Theor. Comput. Sci. 153(2), 79–96 (2006). https://doi.org/10.1016/j.entcs.2005.10.033

    Article  Google Scholar 

  9. Deng, Y., Du, W.: The Kantorovich metric in computer science: a brief survey. Electron. Notes Theor. Comput. Sci. 253(3), 73–82 (2009). https://doi.org/10.1016/j.entcs.2009.10.006

    Article  Google Scholar 

  10. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.: Characterising testing preorders for finite probabilistic processes. Log. Methods Comput. Sci. 4(4), Article no. 4 (2008). https://doi.org/10.2168/lmcs-4(4:4)2008

  11. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov processes. Theor. Comput. Sci. 318(3), 323–354 (2004). https://doi.org/10.1016/j.tcs.2003.09.013

    Article  MathSciNet  MATH  Google Scholar 

  12. Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: The metric analogue of weak bisimulation for probabilistic processes. In: Proceedings of 17th Annual IEEE Symposium on Logic in Computer Science, LICS 2002, Copenhagen, July 2002, pp. 413–422. IEEE CS Press, Washington, DC (2002). https://doi.org/10.1109/lics.2002.1029849

  13. Du, W., Deng, Y., Gebler, D.: Behavioural pseudometrics for nondeterministic probabilistic systems. In: Fränzle, M., Kapur, D., Zhan, N. (eds.) SETTA 2016. LNCS, vol. 9984, pp. 67–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47677-3_5

    Chapter  Google Scholar 

  14. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability and safety verification for stochastic hybrid systems. In: Proceedings of 14th ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2011, Chicago, IL, April 2011, pp. 43–52. ACM Press, New York (2011). https://doi.org/10.1145/1967701.1967710

  15. Gebler, D., Larsen, K.G., Tini, S.: Compositional bisimulation metric reasoning with probabilistic process calculi. Log. Methods Comput. Sci. 12(4), Article no. 12 (2016). https://doi.org/10.2168/lmcs-12(4:12)2016

  16. Gebler, D., Tini, S.: SOS specifications for uniformly continuous operators. J. Comput. Syst. Sci. 92, 113–151 (2018). https://doi.org/10.1016/j.jcss.2017.09.011

    Article  MathSciNet  MATH  Google Scholar 

  17. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.-P.: A compositional modelling and analysis framework for stochastic hybrid systems. Form. Methods Syst. Des. 43(2), 191–232 (2013). https://doi.org/10.1007/s10703-012-0167-z

    Article  MATH  Google Scholar 

  18. Hennessy, M., Regan, T.: A process algebra for timed systems. Inf. Comput. 117(2), 221–23 (1995). https://doi.org/10.1006/inco.1995.1041

    Article  MathSciNet  MATH  Google Scholar 

  19. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs (1985)

    MATH  Google Scholar 

  20. Hu, J., Lygeros, J., Sastry, S.: Towards a theory of stochastic hybrid systems. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 160–173. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46430-1_16

    Chapter  MATH  Google Scholar 

  21. Lanotte, R., Merro, M.: A calculus of cyber-physical systems. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 115–127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53733-7_8

    Chapter  Google Scholar 

  22. Lanotte, R., Merro, M., Muradore, R., Viganò, L.: A formal approach to cyber-physical attacks. In: Proceedings of 30th IEEE Computer Security Foundations Symposium, CSF 2017, Santa Barbara, CA, August 2017, pp. 436–450. IEEE CS Press, Washington, DC (2017). https://doi.org/10.1109/csf.2017.12

  23. Lanotte, R., Merro, M., Tini, S.: Compositional weak metrics for group key update. In: Larsen, K.G., Bodlaender, H.L., Raskin, J.-F. (eds.) Proceedings of 42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017. Leibniz International Proceedings in Informatics, Aalborg, August 2017, vol. 42, Article no. 72. Dagstuhl Publishing, Saarbrücken/Wadern (2017). https://doi.org/10.4230/lipics.mfcs.2017.72

  24. Lanotte, R., Merro, M., Tini, S.: Equational reasonings in wireless network gossip protocols. arXiv preprint 1707.03215 (2017). https://arxiv.org/abs/1707.03215

  25. Lanotte, R., Merro, M., Tini, S.: Weak simulation quasimetric in a gossip scenario. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017. LNCS, vol. 10321, pp. 139–155. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60225-7_10

    Chapter  Google Scholar 

  26. Lanotte, R., Merro, M., Tini, S.: Towards a formal notion of impact metric for cyber-physical attacks. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 296–315. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98938-9_17

    Chapter  Google Scholar 

  27. Lanotte, R., Merro, M., Tini, S.: A probabilistic calculus of cyber-physical systems. Inf. Comput. (to appear)

    Google Scholar 

  28. Schiller, R.L.: Measures, Integrals and Martingales. Cambridge University Press, Cambridge (2005). https://doi.org/10.1017/cbo9780511810886

    Book  Google Scholar 

  29. Segala, R.: Modeling and verification of randomized distributed real-time systems. Ph.D. thesis, MIT, Cambridge, MA (1995)

    Google Scholar 

  30. Sproston, J.: Decidable model checking of probabilistic hybrid automata. In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 31–45. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45352-0_5

    Chapter  Google Scholar 

  31. van Breugel, F., Worrell, J.: A behavioural pseudometric for probabilistic transition systems. Theor. Comput. Sci. 331(1), 115–142 (2005). https://doi.org/10.1016/j.tcs.2004.09.035

    Article  MathSciNet  MATH  Google Scholar 

  32. Villani, C.: Optimal Transport, Old and New. Grundlehren der mathematischen Wissenschaften, vol. 338. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71050-9

    Book  MATH  Google Scholar 

  33. Wang, S., Zhan, N., Zhang, L.: A compositional modelling and verification framework for stochastic hybrid systems. Form. Aspects Comput. 29(4), 751–775 (2017). https://doi.org/10.1007/s00165-017-0421-7

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Tini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lanotte, R., Tini, S. (2018). Weak Bisimulation Metrics in Models with Nondeterminism and Continuous State Spaces. In: Fischer, B., Uustalu, T. (eds) Theoretical Aspects of Computing – ICTAC 2018. ICTAC 2018. Lecture Notes in Computer Science(), vol 11187. Springer, Cham. https://doi.org/10.1007/978-3-030-02508-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02508-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02507-6

  • Online ISBN: 978-3-030-02508-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics