Skip to main content

Immunotherapy in Lung Cancer: A New Age in Cancer Treatment

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 995))

Abstract

The management of Non-Small Cell Lung Cancer (NSCLC) has changed dramatically in the last 10 years with an increase in the understanding of the biology and with the development of new and multiple treatments. Chemotherapy being the first systemic treatment used in the setting of advanced disease, proving benefit for patients over palliative care. With the identification of oncogenic drivers, innovative targeted therapies were developed and tested, leading to important changes in the management of certain patients and giving to some of them the possibility to be treated in first line with oral inhibitors. Immunotherapy was then explored as a potential option, with promising results, and data of impact in important endpoints in lung cancer treatments. This chapter explores the different CTLA-4 inhibitors that have been investigated in NSCLC: ipilimumab and tremelimumab, as well as the different immune checkpoint inhibitors: anti PD-1 (nivolumab and pembrolizumab) and PD-L1 (atezolizumab, durvalumab, avelumab, BMS-936559) medications. It also analyzes the different studies that have been developed for NSCLC with these medications, the evidence obtained, and the possible role in the management of patients. Immunotherapy has definitely changed the paradigm on NSCLC treatment, and the future is promising for the benefit of patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Molina J, Yang P, Cassivi S, et al. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83(5):584–94.

    Article  Google Scholar 

  2. Ferreccio C, González C, Milosavjlevic V, et al. Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology. 2000;11(6):673–9.

    Article  CAS  Google Scholar 

  3. Rapp E, Pater JL, Willan A, et al. Chemotherapy can prolong survival in patients with advanced non-small-cell lung cancer—report of a Canadian multicenter randomized trial. J Clin Oncol. 1988;6(4):633–41.

    Article  CAS  Google Scholar 

  4. NSCLC Meta-Analyses Collaborative Group. Chemotherapy in addition to supportive care improves survival in advanced non-small-cell lung cancer: a systematic review and meta-analysis of individual patient data from 16 randomized controlled trials. J Clin Oncol. 2008;26:4617–25.

    Article  Google Scholar 

  5. Scagliotti GV, Parikh P, von Pawel J, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008;26(21):3543–51.

    Article  CAS  Google Scholar 

  6. Fossella FV, Lynch T, Shepherd FA. Second line chemotherapy for NSCLC: establishing a gold standard. Lung Cancer. 2002;38(Suppl 4):5–12.

    Article  Google Scholar 

  7. Hanna N, Shepherd FA, Fossella FV, et al. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol. 2004;22(9):1589–97.

    Article  CAS  Google Scholar 

  8. Rolfo C, Caglevic C, Mahave M, Bustamante E, Castañon E, Gil Bazo I, Marquez-Medina D. Chapter 14. Chemotherapy beyond the second line of treatment in non-small cell lung cancer: new drug development. In: Fighting lung cancer with conventional therapies. Hauppauge, NY: Nova Science Publishers; 2015. p. 229–40.

    Google Scholar 

  9. Vokes E, Salgia R, Karrison R. Evidence-based role of bevacizumab in non-small cell lung cancer. Ann Oncol. 2013;24(1):6–9.

    Article  CAS  Google Scholar 

  10. Caglevic C, Grassi M, Raez L, Listi A, Giallombardo M, Bustamante E, Gil-Bazo I, Rolfo C. Nintedanib in non-small cell lung cancer: from preclinical to approval. Ther Adv Respir Dis. 2015;9(4):164–72.

    Article  CAS  Google Scholar 

  11. Reck M, Kaiser R, Mellemgaard A, et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014;15(2):143–55.

    Article  CAS  Google Scholar 

  12. Horn L, Pao W. EML4-ALK: honing in on a new target in non-small-cell lung cancer. J Clin Oncol. 2009;27(26):4232–5.

    Article  CAS  Google Scholar 

  13. Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8.

    Article  CAS  Google Scholar 

  14. Györki D, Callahan M, Wolchock J, Ariyan C. The delicate balance of melanoma immunotherapy. Clin Transl Immunol. 2013;2:e5.

    Article  Google Scholar 

  15. Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Immunol Rev. 2007;7:41–51.

    Article  CAS  Google Scholar 

  16. Vesely M, Kershaw M, Schreiber R, Smyth M. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–71.

    Article  CAS  Google Scholar 

  17. Chen D, Mellman I. Oncology meets immunology: “The Cancer-Immunity Cycle”. Immunity. 2013;39(25):1–10.

    Article  Google Scholar 

  18. Abbas A, Lichtman A, Pillai S. Immunity to tumors. In: Cellular and molecular immunology. Philadelphia: Elsevier; 2015. p. 383–97.

    Google Scholar 

  19. Pardoll D. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  Google Scholar 

  20. Cebon J, Behren A. Evolving role of tumor antigens for future melanoma therapies. Future Oncol. 2014;10:1457–68.

    Article  Google Scholar 

  21. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27(4):450–61.

    Article  CAS  Google Scholar 

  22. Boussiotis V. Somatic mutations and immunotherapy outcome with CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):30–2.

    Article  Google Scholar 

  23. Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33:1974–82.

    Article  CAS  Google Scholar 

  24. Weber J. Anti–CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist. 2007;12:864–72.

    Article  CAS  Google Scholar 

  25. Cameron F, Whiteside G, Perry C. Ipilimumab: first global approval. Drugs. 2011;71(8):1093–104.

    Article  Google Scholar 

  26. Hodi F, O’Day S, McDermott D, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  Google Scholar 

  27. Tomasini P, Khobta N, Greillier L, Barlesi F. Ipilimumab: its potential in non-small cell lung cancer. Ther Adv Med Oncol. 2012;4(2):43–50.

    Article  CAS  Google Scholar 

  28. Weber J, Hamid O, Amin A, et al. Randomized phase I pharmacokinetic study of ipilimumab with or without one of two different chemotherapy regimens in patients with untreated advanced melanoma. Cancer Immun. 2013;13:7.

    PubMed  PubMed Central  Google Scholar 

  29. Lynch T, Bondarenko I, Luft A. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol. 2012;30(17):2046–54.

    Article  CAS  Google Scholar 

  30. https://clinicaltrials.gov/ct2/show/NCT01998126.

  31. Ribas A, Hanson D, Noe D, et al. Tremelimumab (CP-675,206), a cytotoxic T lymphocyte-associated antigen 4 blocking monoclonal antibody in clinical development for patients with cancer. Oncologist. 2007;12(7):873–83.

    Article  CAS  Google Scholar 

  32. Zatloukal P, Heo DS, Park K, et al. Randomized phase II clinical trial comparing tremelimumab (CP-675,206) with best supportive care (BSC) following first-line platinum-based therapy in patients (pts) with advanced non-small cell lung cancer (NSCLC). J Clin Oncol (Meeting Abstracts). 2009;27(15S):8071.

    Google Scholar 

  33. https://clinicaltrials.gov/ct2/show/NCT02040064.

  34. https://clinicaltrials.gov/show/NCT01285609.

  35. Nguyen L, Ohashi P. Clinical blockade of PD1 and LAG3-potencial mechanisms of action. Nat Immunol Rev. 2015;15:45–56.

    Article  CAS  Google Scholar 

  36. Zou W, Chen L. Inhibitory B7-family molecules in the tumor microenvironment. Nat Rev Immunol. 2008;8(6):467–77.

    Article  CAS  Google Scholar 

  37. Konishi J, Yamazaki K, Azuma M, et al. B7-H1 expression on non small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res. 2004;10(15):5094–100.

    Article  CAS  Google Scholar 

  38. Pauken KE, Wherry EJ. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 2015;36(4):265–76.

    Article  CAS  Google Scholar 

  39. Chinai JM, Janakiram M, Chen F, et al. New immunotherapies targeting the PD-1 pathway. Trends Pharmacol Sci. 2015;36(9):587–95.

    Article  CAS  Google Scholar 

  40. Wang C, Thudium K, Han M, et al. In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol Res. 2014;2:846.

    Article  CAS  Google Scholar 

  41. Sundar R, Cho B-C, Brahmer JR, Soo RA. Nivolumab in NSCLC: latest evidence and clinical potential. Ther Adv Med Oncol. 2015;7(2):85–96.

    Article  CAS  Google Scholar 

  42. Topalian SL, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  Google Scholar 

  43. Gettinger SN, et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2015;33:2004–12.

    Article  CAS  Google Scholar 

  44. Rizvi NA, Mazieres J, Planchard D, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015;16:257–65.

    Article  CAS  Google Scholar 

  45. Horn L, Rizvi N, Mazieres J, et al. Longer-term follow-up of a phase 2 study (CheckMate 063) of nivolumab in patients with advanced refractory squamous (SQ) non-small cell lung cancer (NSCLC). J Thor Oncol. 2015;10(9 Suppl 2), abstract 02.03.

    Google Scholar 

  46. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35.

    Article  CAS  Google Scholar 

  47. Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced non-squamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.

    Article  CAS  Google Scholar 

  48. Borghaei H, Brahmer J, Horn L, et al. Nivolumab vs docetaxel in patients with advanced NSCLC: CheckMate 017/057 2-y update and exploratory cytokine profile analyses. J Clin Oncol. 2016;34(Suppl), abstr 9025.

    Google Scholar 

  49. https://clinicaltrials.gov/ct2/show/NCT01454102.

  50. Najjar Y, Kirkwood J. Pembrolizumab: pharmacology and therapeutics. Am J Hematol Oncol. 2014;10(5):17–9.

    Google Scholar 

  51. Garon E, Rizvi N, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28.

    Article  Google Scholar 

  52. Hui R, Gandhi L, Carcereny Costa E, et al. Long-term OS for patients with advanced NSCLC enrolled in the KEYNOTE-001 study of pembrolizumab. J Clin Oncol. 2016;34(Suppl), abstr 9026.

    Google Scholar 

  53. Herbst R, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–50.

    Article  CAS  Google Scholar 

  54. Baas P, Garon E, Herbst R, et al. Relationship between level of PD-L1 expression and outcomes in the KEYNOTE-010 study of pembrolizumab vs docetaxel for previously treated, PD-L1-Positive NSCLC. J Clin Oncol. 2016;34(Suppl), abstr 9015.

    Google Scholar 

  55. Garon E, Herbst R, Kim DW, et al. Pembrolizumab vs docetaxel for previously treated advanced NSCLC with a PD-L1 tumor proportion score (TPS) 1%–49%: results from KEYNOTE-010. J Clin Oncol. 2016;34(Suppl), abstr 9024.

    Google Scholar 

  56. Herbst R, Baas P, Perez-Gracia JL, et al. Archival vs new tumor samples for assessing PD-L1 expression in the KEYNOTE-010 study of pembrolizumab vs docetaxel for previously treated advanced NSCLC. J Clin Oncol. 2016;34(Suppl), abstr 3030.

    Google Scholar 

  57. https://clinicaltrials.gov/ct2/show/NCT02220894.

  58. https://clinicaltrials.gov/ct2/show/NCT02343952.

  59. Philips GK, Atkins M. Therapeutic uses of anti-PD-1 and anti-PD-L1 antibodies. Int Immunol. 2015;27(1):39–46.

    Article  CAS  Google Scholar 

  60. Haile S, Dalal S, Clements V. Soluble CD80 restores T cell activation and overcomes tumor cell programmed death ligand-1-mediated immune suppression. J Immunol. 2013;191(5):2829–36.

    Article  CAS  Google Scholar 

  61. Brahmer J, Rizvi N, Lutzky J, et al. Clinical activity and biomarkers of MEDI4736, an anti-PD-L1 antibody, in patients with NSCLC. J Clin Oncol. 2014;32(Suppl):5s, abstr 8021.

    Google Scholar 

  62. Rizvi N, Brahmer J, Ou SH, et al. Safety and clinical activity of MEDI4736, an anti-programmed cell death-ligand 1 (PD-L1) antibody, in patients with non-small cell lung cancer (NSCLC). J Clin Oncol. 2015;33(15_Suppl, May 20 Supplement):8032.

    Google Scholar 

  63. Antonia S, Kim SW, Spira A, et al. Safety and clinical activity of durvalumab (MEDI4736), an anti-PD-L1 antibody, in treatment-naïve patients with advanced non–small-cell lung cancer. J Clin Oncol. 2016;34(Suppl), abstr 9029.

    Google Scholar 

  64. Antonia S, Goldberg S, Balmanoukian A, et al. Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: a multicentre, phase 1b study. Lancet Oncol. 2016;17(3):299–308.

    Article  CAS  Google Scholar 

  65. Reichert J. Antibodies to watch in 2016. MAbs. 2016;8(2):197–204.

    Article  CAS  Google Scholar 

  66. Spigel D, Gettinger S, Horn L, et al. Clinical activity, safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic non-small cell lung cancer (NSCLC). J Clin Oncol. 2013;31(Suppl), abstr 8008.

    Google Scholar 

  67. Herbst R, Soria J-C, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.

    Article  CAS  Google Scholar 

  68. Schmid P, Hegde P, Zou W, et al. Association of PD-L2 expression in human tumors with atezolizumab activity. J Clin Oncol. 2016;34(Suppl), abstr 11506.

    Google Scholar 

  69. Liu S, Powderly J, Camidge R, et al. Safety and efficacy of MPDL3280A (anti-PDL1) in combination with platinum-based doublet chemotherapy in patients with advanced non-small cell lung cancer (NSCLC). J Clin Oncol. 2015;33(Suppl), abstr 8030.

    Google Scholar 

  70. Besse B, Johnson M, Jänne PA, et al. Phase II, single-arm trial (BIRCH) of atezolizumab as first-line or subsequent therapy for locally advanced or metastatic PD-L1-selected non-small cell lung cancer (NSCLC). Presented at 2015 European Cancer Congress, 25–29 Sept, Vienna, Austria. Abstract 16LBA.

    Google Scholar 

  71. Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387(10030):1837–46.

    Article  CAS  Google Scholar 

  72. Smith D, Vansteenkiste J, Fehrenbacher L, et al. Updated survival and biomarker analyses of a randomized phase II study of atezolizumab vs docetaxel in 2L/3L NSCLC (POPLAR). J Clin Oncol. 2016;34(Suppl), abstr 9028.

    Google Scholar 

  73. Socinski MA, Jotte RM, Cappusso F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 378(24):2288–301.

    Google Scholar 

  74. Hamanishi J, Mandai M, Konishi I. Immune checkpoint inhibition in ovarian cancer. Int Immunol. 2016;7. pii: dxw020.

    Google Scholar 

  75. Kelly K, Patel M, Infante J, et al. Avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with metastatic or locally advanced solid tumors: assessment of safety and tolerability in a phase I, open-label expansion study. J Clin Oncol. 2015;33(Suppl), abstr 3044.

    Google Scholar 

  76. Gulley J, Spigel D, Kelly K, et al. Avelumab (MSB0010718C), an anti-PD-L1 antibody, in advanced NSCLC patients: a phase 1b, open-label expansion trial in patients progressing after platinum-based chemotherapy. J Clin Oncol (Meeting Abstracts). 2015;33(15_Suppl):8034.

    Google Scholar 

  77. Verschraegen C, Chen F, Spigel D, et al. Avelumab (MSB0010718C; anti-PD-L1) as a first-line treatment for patients with advanced NSCLC from the JAVELIN Solid Tumor phase 1b trial: safety, clinical activity, and PD-L1 expression. J Clin Oncol. 2016;34(Suppl) abstr 9036.

    Google Scholar 

  78. https://clinicaltrials.gov/ct2/show/NCT02395172.

  79. Brahmer J, Tykodi S, Chow L, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.

    Article  CAS  Google Scholar 

  80. Globocan. Estimated cancer incidence, mortality and prevalence worldwide 2012. 2012. http://globocan.iarc.fr/Pages/fact_sheets_population.aspx.

  81. NIH, National Cancer Institute: surveillance, epidemiology and end results. http://seer.cancer.gov/statfacts/html/lungb.html.

  82. Antonia S, Brahmer J, Gettinger S, et al. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with platinum-based doublet chemotherapy in advanced non-small cell lung cancer (NSCLC). J Clin Oncol. 2014;32(Suppl):5s, abstr 8113.

    Google Scholar 

  83. Gettinger S, Shepherd F, Antonia S, et al. First-line nivolumab (anti-PD-1; BMS-936558, ONO-4538) monotherapy in advanced NSCLC: safety, efficacy, and correlation of outcomes with PD-L1 status. J Clin Oncol. 2014;32(Suppl):5s, abstr 8024.

    Google Scholar 

  84. Gettinger SN. Presented at European Society for Medical Oncology (ESMO), 25–29 Sept 2015, Vienna, Austria.

    Google Scholar 

  85. Antonia S, Gettinger S, Quan Man Chow L, et al. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) and ipilimumab in first-line NSCLC: interim phase I results. J Clin Oncol. 2014;32(Suppl):5s, abstr 8023.

    Google Scholar 

  86. Rizvi NA, Gettinger SN, Goldman JW, et al. Safety and efficacy of first-line nivolumab and ipilimumab in non-small cell lung cancer. In: 16th World Conference on Lung Cancer. Abstract ORAL02.05. Presented 7 Sept 2015.

    Google Scholar 

  87. Hellmann M, Gettinger S, Goldman J, et al. CheckMate 012: safety and efficacy of first-line nivolumab and ipilimumab in advanced NSCLC. J Clin Oncol. 2016;34(Suppl), abstr 3001.

    Google Scholar 

  88. Santarpia M, Karachaliou N. Tumor immune microenvironment characterization and response to anti-PD-1 therapy. Cancer Biol Med. 2015;12(2):74–8.

    PubMed  PubMed Central  Google Scholar 

  89. Carbognin L, Pilotto S, Milella M, et al. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS One. 10(6):e0130142. https://doi.org/10.1371/journal.pone.0130142.

  90. Kerr K, Hirsch F. Programmed death ligand-1 immunohistochemistry. Friend or Foe? Arch Pathol Lab Med. 2016;140:326–31.

    Article  CAS  Google Scholar 

  91. Michot JM, Bigenwald C, Champiat S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer. 2016;54:139–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Rolfo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corrales, L., Scilla, K., Caglevic, C., Miller, K., Oliveira, J., Rolfo, C. (2018). Immunotherapy in Lung Cancer: A New Age in Cancer Treatment. In: Naing, A., Hajjar, J. (eds) Immunotherapy. Advances in Experimental Medicine and Biology, vol 995. Springer, Cham. https://doi.org/10.1007/978-3-030-02505-2_3

Download citation

Publish with us

Policies and ethics