Skip to main content

The Effect of Toxin and Human Impact on Marine Ecosystem

  • Chapter
  • First Online:
Advances in Mathematical Methods and High Performance Computing

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 41))

  • 1068 Accesses

Abstract

We formed a plankton-nutrient interaction model which consists of phytoplankton, herbivorous zooplankton, dissolved limiting nutrient with general nutrient uptake functions, instantaneous nutrient recycling, and harvesting on plankton population. Afterward, we modified and expanded the primary model by considering the effect of sunlight, additional nutrients, harmful chemicals, and carbon dioxide into account. Phytoplankton obtain carbohydrate supply from the carbon dioxide in the air, and the overall nutrient uptake rate increases in the presence of sunlight. So, the effect of sunlight and additional food is discussed. Hypothetically, carbon dioxide accelerates the growth of phytoplankton but we considered some limiting factors which abate the process. Some assumptions were made to construct the system equations. We assumed that phytoplankton releases toxic substances to defend themselves from the predation of zooplankton. The entire system was studied analytically, and the threshold values for the existence and stability of various steady states were discussed. Further, we discussed whether pollution emissions can variate the dynamics of the primary system, bring in recurrence bloom therein toxic phytoplankton can be applied to a great extent to sustain system stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Droop, Some thoughts on nutrient limitation in algae, J. Phycol, 9 (1973) 264–272.

    Google Scholar 

  2. K.DEIMLING, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 2008.

    Google Scholar 

  3. Y.Du, S.B. Hsu, Concentration phenomena in a nonlocal quasilinear problem modelling phytoplankton I: existence, SIAM J. Math. Anal. 40 (2008) 1419–1440.

    Article  MathSciNet  Google Scholar 

  4. Y.Du, S.B. Hsu, Concentration phenomena in a nonlocal quasilinear problem modelling phytoplankton II: limiting profile, SIAM J. Math. Anal. 40 (2008) 1441–1470.

    Article  MathSciNet  Google Scholar 

  5. Y.Du, S.B. Hsu, On a nonlocal reaction-diffusion problem arising from the modelling of the phytoplankton growth: SIAM J. Math. Anal. 42 (2010) 1305–1333.

    Google Scholar 

  6. Evans, G.T. and Parslow, J.S. : A model of annual plankton cycles. Biol. Oceanogr. 3,(1985), 327–427.

    Google Scholar 

  7. Dancer EN(1984), On positive solutions of some pairs of differential equation, Trans Amer Math Soc 284 729–743.

    Article  MathSciNet  Google Scholar 

  8. U. Ebert, M. Arrayas, N. Temme, B. Sommeijer, J. Huisman, Critical condition for phytoplankton blooms, Bull. Math. Biol. 63 (2001) 1095–1124.

    Article  Google Scholar 

  9. H.L. Smith, P.E. Waltman, The Theory of the Chemostat, Cambridge University Press. (2008).

    Google Scholar 

  10. Courant R, Hilbert D(1953) Methods of Mathematical Physics, Vol. I Willey Interscience, New York.

    Google Scholar 

  11. X.-Q. ZHAO, Dynamical Systems in Population Biology, Springer, New York, 2003.

    Chapter  Google Scholar 

  12. S. Chakraborty, S. Roy, J. Chattopadhyay, Nutrient-limited toxin production and the dynamics of two phytoplankton in culture media: a mathematical model , E col. Model, 213, (2008), 191–201.

    Article  Google Scholar 

  13. Brewer PG, Goldman JC(1976), Alkalinity changes generated by phytoplankton growth, Limnol Oceanogr 21 108–117.

    Article  Google Scholar 

  14. Busenberg, S., Kishore, K.S., Austin, P. and Wake, G. : The dynamics of a model of a plankton - nutrient interaction. J. Math. Biol. 52, (1990), 677–696.

    Article  Google Scholar 

  15. D. Tilman, Resource Competition and community structure. Princeton University Press New Jersey, 1982.

    Google Scholar 

  16. Greer AT, Cowen RK, Guiland CM, McManus MA, Sevadjian JC, Timmerman AHV (2013), Relationships between phytoplankton thin layers and the fine-scale vertical distributions of two trophic levels of zooplankton. Journal of Plankton Research 35, 939–956.

    Article  Google Scholar 

  17. Badger MR, Price GD, Long BM, Woodger FJ(2006) The environmental plasticity and ecological genomics of cyanobacterial CO 2 concentrating mechanisms, J. Exp Bot 57 249–265.

    Article  Google Scholar 

  18. Ruan, S. : Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling. J. Math. Biol. 31, (1993), 633–654.

    Article  MathSciNet  Google Scholar 

  19. Pardo, O. : Global stability for a phytoplankton-nutrient system. J. Biological Systems 8, (2000), 195–209.

    Google Scholar 

  20. Edwards, A.M. and Brindley, J. : Zooplankton mortality and the dynamical behaviour of plankton population models. Bull. Math. Biol., 61, (1999), 303–339 .

    Article  Google Scholar 

  21. Cushing DH (1975), Marine ecology and fisheries, Cambridge University Press,. London.

    Google Scholar 

  22. Edwards, A.M. and Yool, A. : The role of higher predation in plankton population models. J. Plankton Res., 22, (2000), 1085–1112.

    Article  Google Scholar 

  23. Ruan, S. : Oscillations in Plankton Models with Nutrient Recycling J. Theor. Biol. 208, (2001), 15–26.

    Article  Google Scholar 

  24. Bairagi, N., Pal, S., Chatterjee, S., Chattopadhyay, J.: Nutrient, non-toxic phytoplankton, toxic phytoplankton and zooplankton interaction in the open marine system. In: Hosking, R.J., Venturino, E.(Eds), Aspects of Mathematical Modelling. Mathematics and Biosciences in Interaction. Birkhauser Verlag Basel, Switzerland,(2008), 41–63.

    Google Scholar 

  25. Oscar Angulo, J.C. Lopez-Marcos, M.A. Lopez-Marcos, Numerical Analysis of a Size-Structured Population Model with a Dynamical Resource, Biomath 3 (2014), 1403241, http://dx.doi.org/10.11145/j.biomath.2014.03.241.

  26. Mitra, A and Flynn, K.J. : Promotion of harmful algal blooms by zooplankton predatory activity. Biol. Lett., 2 (2),(2006),194–197.

    Article  Google Scholar 

  27. Morozov, A. and Arashkevich, E. : Patterns of Zooplankton Functional Response in Communities with Vertical Heterogeneity : a Model Study. Math Model. Nat. Phenom. 3 (3), (2008), 131–149.

    Article  MathSciNet  Google Scholar 

  28. Poggiale, J.-C., Gauduchon, M., Auger, P. : Enrichment Paradox Induced by Spatial Heterogeneity in a Phytoplankton-Zooplankton System. Math Model. Nat. Phenom. 3, (2008), 87–102.

    Article  MathSciNet  Google Scholar 

  29. Rene Alt, Jean-Luc Lamotte, Stochastic Arithmetic as a Tool to Study the Stability of Biological Models, Biomath 2 (2013), 1312291, http://dx.doi.org/10.11145/j.biomath.2013.12.291.

    MathSciNet  MATH  Google Scholar 

  30. Condon RH, Duarte CM, Pitt KA, Robinson KL, Lucas CH, Sutherland KR, Mianzan HW, Bogeberg M, Purcell JE, Decker MB, and others (2013) Recurrent jellyfish blooms are a consequence of global oscillations. Proc Natl Acad Sci U S A 110: 1000–1005

    Article  Google Scholar 

Download references

Acknowledgement

The research is partially supported by the University Grants Commission, New Delhi [grant number MRP-MAJ-MATH-2013-609].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pal .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Stability Analysis of the System

We construct the 3 × 3 Jacobian matrix:

$$\displaystyle \begin{aligned} \left( \begin{array}{ccc} -\alpha - \frac{m_{1}a_{1}p}{(a_{1}+s)^{2}} & \gamma_{1} - \frac{m_{1}s}{a_{1}+s} & \gamma_{2} \\ \frac{m_{1}a_{1}p}{(a_{1}+s)^{2}} & \frac{m_{1}s}{a_{1}+s} - \frac{m_{2}a_{2}z}{(a_{2}+p)^{2}} - \beta_{1}- h_{1}c_{1} & -\frac{m_{2}p}{a_{2}+p} \\ 0 & \frac{m_{2}a_{2}z}{(a_{2}+p)^{2}}-\frac{\mu a_{3}z}{(a_{3}+p)^{2}} & \frac{m_{2}p}{a_{2}+p} - \beta_{2} - h_{2}c_{2}- \frac{\mu p}{a_{3}+p} \end{array} \right)\end{aligned}$$

We check the eigen values at every equilibrium point E 0, E 1, E ∗.

The Jacobian at the equilibrium point \(E_{0}= (\frac {M}{\alpha }, 0, 0)\) has the eigen values − α, \(\frac {m_{1}s}{a_{1}+s}-\beta _{1}-c_{1}h_{1}\), and − (β 2 + c 2 h 2). So, we can say that E 0 is locally asymptotically stable if \(\frac {m_{1}s}{a_{1}+s}-\beta _{1}-c_{1}h_{1}< 0 \).

The variational matrix of the system around the positive equilibrium E ∗ = (s ∗, p ∗, z ∗) is

$$\displaystyle \begin{aligned} \left( \begin{array}{ccc} n_{11} & n_{12} & n_{13} \\ n_{21} & n_{22} & n_{23} \\ 0 & n_{32} & 0 \end{array} \right)\end{aligned}$$

where \(n_{11}= -\alpha - \frac {m_{1}a_{1}p^{*}}{(a_{1}+s^{*})^{2}}< 0\), \(n_{12} = \gamma _{1} - \frac {m_{1}s^{*}}{a_{1}+s^{*}}< 0\), n 13 = γ 2 > 0, \(n_{21}= \frac {m_{1}a_{1}p^{*}}{(a_{1}+s^{*})^{2}}> 0\), \(n_{22}= \frac {m_{1}s^{*}}{a_{1}+s^{*}} - \frac {m_{2}a_{2}z^{*}}{(a_{2}+p^{*})^{2}} - \beta _{1}- h_{1}c_{1}= \frac {m_{2}z}{a_{2}+p}- \frac {m_{2}a_{2}z^{*}}{(a_{2}+p^{*})^{2}}> 0\), \(n_{23}= -\frac {m_{2}p^{*}}{a_{2}+p^{*}}< 0 \), and \(n_{32}= \frac {m_{2}a_{2}z^{*}}{(a_{2}+p^{*})^{2}}-\frac {\mu a_{3}z^{*}}{(a_{3}+p^{*})^{2}}> 0\)

The characteristic equation is of the form λ 3 + A 1 λ 2 + A 2 λ + A 3,

where A 1 = −(n 11 + n 22), A 2 = n 11 n 22 − n 12 n 21 − n 23 n 32, and A 3 = n 11 n 23 n 32 − n 13 n 21 n 32.

By the Routh-Hurwitz criteria, all roots of above equation have negative real parts if and only if A 1 > 0, A 3 > 0, and A 1 A 2 − A 3 > 0.

\(A_{1}=-(n_{11}+n_{22})= -(-\alpha - \frac {m_{1}a_{1}p^{*}}{(a_{1}+s^{*})^{2}}+\frac {m_{2}z^*}{a_{2}+p^*} - \frac {m_{2}a_{2}z^{*}}{(a_{2}+p^{*})^{2}}) >0\)

if \(\alpha + \frac {m_{1}a_{1}p^{*}}{(a_{1}+s^{*})^{2}}+\frac {m_{2}a_{2}z^{*}}{(a_{2}+p^{*})^{2}}> \frac {m_{2}z^*}{a_{2}+p^*}.\)

A 2 = n 11 n 22 − n 12 n 21 − n 23 n 32 > 0

if n 11 n 22 > n 12 n 21 + n 23 n 32

$$\displaystyle \begin{aligned} & A_{3}= n_{11}n_{23}n_{32}- n_{13}n_{21}n_{32}\\ =&(-\alpha - \frac{m_{1}a_{1}p^{*}}{(a_{1}+s^{*})^{2}})(-\frac{m_{2}p^{*}}{a_{2}+p^{*}})(\frac{m_{2}a_{2}z^{*}}{(a_{2}+p^{*})^{2}} -\frac{\mu a_{3}z^{*}}{(a_{3}+p^{*})^{2}})\\ &\quad - \gamma_{2} \frac{m_{1}a_{1}p^{*}}{(a_{1}+s^{*})^{2}} (\frac{m_{2}a_{2}z^{*}}{(a_{2}+p^{*})^{2}}-\frac{\mu a_{3}z^{*}}{(a_{3}+p^{*})^{2}})\\ =&[(\alpha + \frac{m_{1}a_{1}p^{*}}{(a_{1}+s^{*})^{2}})(\frac{m_{2}p^{*}}{a_{2}+p^{*}})-\gamma_{2} \frac{m_{1}a_{1}p^{*}}{(a_{1}+s^{*})^{2}}] (\frac{m_{2}a_{2}z^{*}}{(a_{2}+p^{*})^{2}}-\frac{\mu a_{3}z^{*}}{(a_{3}+p^{*})^{2}})\\ =&[\alpha (\frac{m_{2}p^{*}}{a_{2}+p^{*}})+ (\frac{m_{1}a_{1}p^{*}}{(a_{1}+s^{*})^{2}})(\frac{m_{2}p^{*}}{a_{2}+p^{*}})- \gamma_{2} \frac{m_{1}a_{1}p^{*}}{(a_{1}+s^{*})^{2}}] (\frac{m_{2}a_{2}z^{*}}{(a_{2}+p^{*})^{2}}\\ &\quad -\frac{\mu a_{3}z^{*}}{(a_{3}+p^{*})^{2}}) =[\alpha (\frac{m_{2}p^{*}}{a_{2}+p^{*}})+ (\frac{m_{1}a_{1}p^{*}}{(a_{1}+s^{*})^{2}})\\ &\qquad (\frac{m_{2}p^{*}}{a_{2}+p^{*}}- \gamma_{2})] (\frac{m_{2}a_{2}z^{*}}{(a_{2}+p^{*})^{2}}-\frac{\mu a_{3}z^{*}}{(a_{3}+p^{*})^{2}}) > 0 \end{aligned} $$

Since, \(\frac {m_{2}p^{*}}{a_{2}+p^{*}}>\gamma _{2}\) and \(\frac {m_{2}a_{2}z^{*}}{(a_{2}+p^{*})^{2}}> \frac {\mu a_{3}z^{*}}{(a_{3}+p^{*})^{2}}\)

Finally, A 1 A 2 −A 3 = −(n 11 +n 22)(n 11 n 22 −n 12 n 21 −n 23 n 32)−(n 11 n 22 −n 12 n 21 −n 23 n 32) > 0 since, − (n 11 + n 22)(n 11 n 22 − n 12 n 21 − n 23 n 32) > n 11 n 22 − n 12 n 21 − n 23 n 32.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, S., Pal, S. (2019). The Effect of Toxin and Human Impact on Marine Ecosystem. In: Singh, V., Gao, D., Fischer, A. (eds) Advances in Mathematical Methods and High Performance Computing. Advances in Mechanics and Mathematics, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-02487-1_6

Download citation

Publish with us

Policies and ethics