Skip to main content

Modelling Corrosion Phenomenon of Magnesium Alloy AZ91 in Simulated Body Fluids

  • Chapter
  • First Online:
Advances in Mathematical Methods and High Performance Computing

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 41))

Abstract

Magnesium alloy AZ91 is one of the best suited biodegradable biomaterials for bioimplants. Magnesium is a highly active metal with accelerated corrosion in physiological environments. AZ91 alloy has two distinct phases in the matrix, which form galvanic couple inducing micro galvanic corrosion (primary phase anodic with respect to the secondary phase) in the alloy. However, the corrosion rate could be controlled by tailoring the microstructure of the alloy. The distribution and dispersion of secondary phase particles greatly influence the corrosion rate of the material. A numerical model was developed using Comsol Multiphysics® to study the effect of distribution of secondary phase on the corrosion rate of the alloy. The average anodic current density was found to be higher for AZ91 with continuous network secondary phase microstructural configuration. The average anodic corrosion current and the corrosion rate were found to be lower for AZ91 with dispersed secondary phase microstructural configuration. The numerical modelling results were found to be consistent with the experimental results available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, C., Yang, H., Wan, P., Wang, K., Tan, L., Yang, K.: Study on biodegradation of the second phase Mg17Al12 in Mg–Al–Zn Alloys: In vitro experiment and thermodynamic calculation. Materials Science and Engineering: C 35, 1-7 (2014)

    Article  Google Scholar 

  2. Committee, A.I.H.: ASM Handbook: Metallography and microstructures. ASM International (2000)

    Google Scholar 

  3. Gobara, M., Shamekh, M., Akid, R.: Improving the corrosion resistance of AZ91D magnesium alloy through reinforcement with titanium carbides and borides. Journal of Magnesium and Alloys 3, 112-120 (2015)

    Article  Google Scholar 

  4. Hamed Rahimi, R.M., Najafabadi, A.H.: Corrosion and Wear Resistance Characterization of Environmentally Friendly Sol­—gel Hybrid Nanocomposite Coating on AA5083. J. Mater. Sci. Technol. 29, 603-608 (2013)

    Google Scholar 

  5. Kot, I., Krawiec, H.: The use of a multiscale approach in electrochemistry to study the corrosion behaviour of as-cast AZ91 magnesium alloy. Journal of Solid State Electrochemistry 19, 2379-2390 (2015)

    Article  Google Scholar 

  6. Luo, T.J., Yang, Y.S.: Corrosion properties and corrosion evolution of as-cast AZ91 alloy with rare earth yttrium. Materials & Design 32, 5043-5048 (2011)

    Article  Google Scholar 

  7. Salman, S., Ichino, R., Okido, M.: A comparative electrochemical study of AZ31 and AZ91 magnesium alloy. International Journal of Corrosion 2010, (2010)

    Google Scholar 

  8. Wang, L., Zhang, B.-P., Shinohara, T.: Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions. Materials & Design 31, 857-863 (2010)

    Article  Google Scholar 

  9. Ramalingam, V.V., Ramasamy, P.: Modelling Corrosion Behavior of Friction Stir Processed Aluminium Alloy 5083 Using Polynomial: Radial Basis Function. Trans. Indian Inst. Met. 1 (https://doi.org/10.1007/s12666-12017-11110-12661) (2017)

  10. Vignesh, R.V., Padmanaban, R., Arivarasu, M., Thirumalini, S., Gokulachandran, J., Ram, M.S.S.S.: Numerical modelling of thermal phenomenon in friction stir welding of aluminum plates. In: IOP Conference Series: Materials Science and Engineering, pp. 012208. IOP Publishing, (2016)

    Google Scholar 

  11. Anik, M., Avci, P., Tanverdi, A., Celikyurek, I., Baksan, B., Gurler, R.: Effect of the eutectic phase mixture on the anodic behavior of alloy AZ91. Materials & Design 27, 347-355 (2006)

    Article  Google Scholar 

  12. Wang, H., Li, Y., Wang, F.: Influence of cerium on passivity behavior of wrought AZ91 alloy. Electrochimica Acta 54, 706-713 (2008)

    Article  Google Scholar 

  13. Hwang, D.Y., Kim, Y.M., Park, D.-Y., Yoo, B., Shin, D.H.: Corrosion resistance of oxide layers formed on AZ91 Mg alloy in KMnO4 electrolyte by plasma electrolytic oxidation. Electrochimica Acta 54, 5479-5485 (2009)

    Article  Google Scholar 

  14. Luo, T.J., Yang, Y.S., Li, Y.J., Dong, X.G.: Influence of rare earth Y on the corrosion behavior of as-cast AZ91 alloy. Electrochimica Acta 54, 6433-6437 (2009)

    Article  Google Scholar 

  15. Zhan, Y., Zhao, H.-Y., Hu, X.-D., Ju, D.-Y.: Effect of elements Zn, Sn and In on microstructures and performances of AZ91 alloy. Transactions of Nonferrous Metals Society of China 20, s318-s323 (2010)

    Google Scholar 

  16. Ko, Y.G., Lee, K.M., Shin, D.H.: Electrochemical corrosion properties of AZ91 Mg alloy via plasma electrolytic oxidation and subsequent annealing. Materials Transactions 52, 1697-1700 (2011)

    Article  Google Scholar 

  17. Ghayad, I., Girgis, N., Azim, A.: Effect of some alloying elements and heat treatment on the corrosion behavior ofAZ91 and ZM60 magnesium alloys. Int. J. Metall. Mater. Sci. Eng 3, 21-32 (2013)

    Google Scholar 

  18. Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C.J., Windhagen, H.: In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26, 3557-3563 (2005)

    Article  Google Scholar 

  19. Choudhary, L., Szmerling, J., Goldwasser, R., Raman, R.K.S.: Investigations into stress corrosion cracking behaviour of AZ91D magnesium alloy in physiological environment. Procedia Engineering 10, 518-523 (2011)

    Article  Google Scholar 

  20. Xue, D., Yun, Y., Tan, Z., Dong, Z., Schulz, M.J.: In Vivo and In Vitro Degradation Behavior of Magnesium Alloys as Biomaterials. Journal of Materials Science & Technology 28, 261-267 (2012)

    Article  Google Scholar 

  21. Walter, R., Kannan, M.B., He, Y., Sandham, A.: Effect of surface roughness on the in vitro degradation behaviour of a biodegradable magnesium-based alloy. Applied Surface Science 279, 343-348 (2013)

    Article  Google Scholar 

  22. Tahmasebifar, A., Kayhan, S.M., Evis, Z., Tezcaner, A., Çinici, H., Koç, M.: Mechanical, electrochemical and biocompatibility evaluation of AZ91D magnesium alloy as a biomaterial. Journal of Alloys and Compounds 687, 906-919 (2016)

    Article  Google Scholar 

  23. Wen, Z., Duan, S., Dai, C., Yang, F., Zhang, F.: Biodegradability and Surface Chemistry of AZ31D Compared with AZ91 Magnesium Alloy in a Modified Simulated Body Fluid. Int. J. Electrochem. Sci 9, 7846-7864 (2014)

    Google Scholar 

  24. Jia, J.X., Song, G., Atrens, A.: Experimental Measurement and Computer Simulation of Galvanic Corrosion of Magnesium Coupled to Steel. Advanced Engineering Materials 9, 65-74 (2007)

    Article  Google Scholar 

  25. Deshpande, K.B.: Validated numerical modelling of galvanic corrosion for couples: Magnesium alloy (AE44)–mild steel and AE44–aluminium alloy (AA6063) in brine solution. Corrosion Science 52, 3514-3522 (2010)

    Article  Google Scholar 

  26. Grogan, J.A., O’Brien, B.J., Leen, S.B., McHugh, P.E.: A corrosion model for bioabsorbable metallic stents. Acta Biomaterialia 7, 3523-3533 (2011)

    Article  Google Scholar 

  27. Bakhsheshi-Rad, H.R., Abdellahi, M., Hamzah, E., Ismail, A.F., Bahmanpour, M.: Modelling corrosion rate of biodegradable magnesium-based alloys: The case study of Mg-Zn-RE-xCa (x = 0, 0.5, 1.5, 3 and 6 wt%) alloys. Journal of Alloys and Compounds 687, 630-642 (2016)

    Article  Google Scholar 

  28. Deshpande, K.B.: Numerical modeling of micro-galvanic corrosion. Electrochimica Acta 56, 1737-1745 (2011)

    Article  Google Scholar 

  29. Jain, V., Mishra, R.S., Gupta, A.K., Gouthama: Study of β-precipitates and their effect on the directional yield asymmetry of friction stir processed and aged AZ91C alloy. Materials Science and Engineering: A 560, 500-509 (2013)

    Article  Google Scholar 

  30. Mahmudi, R., Kabirian, F., Nematollahi, Z.: Microstructural stability and high-temperature mechanical properties of AZ91 and AZ91 + 2RE magnesium alloys. Materials & Design 32, 2583-2589 (2011)

    Article  Google Scholar 

  31. Rey, P., Gesto, D., del Valle, J., Verdera, D., Ruano, O.A.: Fine And Ultra-Fine Grained AZ61 And AZ91 Magnesium Alloys Obtained By Friction Stir Processing. In: Materials Science Forum, pp. 1002-1007. Trans Tech Publ, (2012)

    Google Scholar 

  32. Shanthi, M., Lim, C.Y.H., Lu, L.: Effects of grain size on the wear of recycled AZ91 Mg. Tribology International 40, 335-338 (2007)

    Article  Google Scholar 

  33. Zhang, D., Wang, S., Qiu, C., Zhang, W.: Superplastic tensile behavior of a fine-grained AZ91 magnesium alloy prepared by friction stir processing. Materials Science and Engineering: A 556, 100-106 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Amrita Vishwa Vidyapeetham, Amrita University, India for their financial support to carry out this investigation through an internally funded research project no. AMRITA/IFRP-20/2016-2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramasamy Padmanaban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaira Vignesh, R., Padmanaban, R. (2019). Modelling Corrosion Phenomenon of Magnesium Alloy AZ91 in Simulated Body Fluids. In: Singh, V., Gao, D., Fischer, A. (eds) Advances in Mathematical Methods and High Performance Computing. Advances in Mechanics and Mathematics, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-02487-1_30

Download citation

Publish with us

Policies and ethics