Agile’TRIZ Framework: Towards the Integration of TRIZ Within the Agile Innovation Methodology

  • Didier Casner
  • Achille Souili
  • Rémy HoussinEmail author
  • Jean Renaud
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 541)


Applying TRIZ is difficult, time-consuming and therefore requires implies important development costs: designers spend a lot of time to analyze the problem, to identify the contradictions, and then to develop innovative concepts and propose technical solutions. The efficiency of TRIZ strongly depends on the level of completeness of the problem and the experience of the designer with TRIZ tools. Agile methodologies are commonly used to efficiently develop new products toward an iterative, incremental and adaptive development cycle. They allow to rapidly provide a first technical solution and break the product development work into small increments for minimizing the amount of up-front planning and design. Agile’TRIZ is an Agile-based framework for TRIZ intended for enhancing the innovative skills and the efficiency of the designers, and to provide an efficient approach for quickly analyzing a problem and rapidly developing new innovative solutions using TRIZ tools through an iterative development cycle.


TRIZ Agile development Agile framework Concurrent engineering 


  1. 1.
    Link, P.: Agile Methoden im Produkt-Lifecycle-Prozess – Mit agilen Methoden die Komplexität im Innovationsprozess handhaben. In: Schoeneberg, K.P. (ed.) Komplexitätsmanagement in Unternehmen, pp. 65–92. Springer Gabler, Wiesbaden (2014). Scholar
  2. 2.
    Böhmer, A., et al.: Think.make.start. - an agile framework. In: 84 Proceedings of the DESIGN 2016 14th International Design Conference (2016). Accessed 12 Apr 2018Google Scholar
  3. 3.
    Brandes, U., Gemmer, P., Koschek, H., Schültken, L.: Management Y: Agile, Scrum, Design Thinking & Co.: So gelingt der Wandel zur attraktiven und zukunftsfähigen Organisation. Campus Verlag (2014)Google Scholar
  4. 4.
    Cavallucci, D., Cascini, G., Duflou, J., Livotov, P., Vaneker, T.: TRIZ and knowledge-based innovation in science and industry. Procedia Eng. 131, 1–2 (2015). Scholar
  5. 5.
    Robles, G.C., Negny, S., Lann, J.M.L.: Case-based reasoning and TRIZ: a coupling for innovative conception in Chemical Engineering. Chem. Eng. Process. Process Intensif. 48, 239–249 (2009). Scholar
  6. 6.
    Houssin, R., Renaud, J., Coulibaly, A., Cavallucci, D., Rousselot, F.: TRIZ theory and case based reasoning: synergies and oppositions. Int. J. Interact. Des. Manuf. IJIDeM 9, 177–183 (2014). Scholar
  7. 7.
    Casner, D., Livotov, P., Mas’udah, Kely da Silva, P: TRIZ-based approach for process intensification and problem solving in process engineering: concepts and research agenda, Wroclaw, Poland (2016)Google Scholar
  8. 8.
    Casner, D., Livotov, P.: Advanced innovation design approach for process engineering. In: 21st International Conference on Engineering Design (ICED 17), Vancouver, Canada, pp 653–662 (2017)Google Scholar
  9. 9.
    Cooper, R.G.: Agile–stage-gate hybrids. Res-Technol. Manag. 59, 21–29 (2016). Scholar
  10. 10.
    Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices. Pearson Education (2003)Google Scholar
  11. 11.
    Woodward, S.: Evolutionary project management. Computer 32, 49–57 (1999). Scholar
  12. 12.
    Edmonds, E.: A process for the development of software for non-technical users as an adaptive system. Gen. Syst. 21, 215–218 (1974)Google Scholar
  13. 13.
    Highsmith, J.: Adaptive Software Development: A Collaborative Approach to Managing Complex Systems. Addison-Wesley (2013)Google Scholar
  14. 14.
    Rubin, K.S.: Essential Scrum: Umfassendes Scrum-Wissen aus der Praxis. MITP Verlags GmbH & Co. KG (2014)Google Scholar
  15. 15.
    Stark, E.: Scrum Quickstart Guide: A Simplified Beginner’s Guide to Mastering Scrum. Createspace Independent Pub (2014)Google Scholar
  16. 16.
    Brechner, E.: Agile Project Management with Kanban. Microsoft Press (2015)Google Scholar
  17. 17.
    Cimorelli, S.: Kanban for the Supply Chain: Fundamental Practices for Manufacturing Management, 2nd edn. CRC Press (2016)Google Scholar
  18. 18.
    Taherivand, A., Schaefer, H., Kerguenne, A.: Design Thinking: Die agile Innovations-Strategie. Haufe Lexware (2017)Google Scholar
  19. 19.
    Anderson, C.: Makers: The New Industrial Revolution. Crown Publishing Group (2012)Google Scholar
  20. 20.
    Ellis, S.: Lean Startup Marketing: Agile Product Development, Business Model Design, Web Analytics, and Other Keys to Rapid Growth: A Step-By-Step Guide to Successful Startup Marketing. Hyperink (2012)Google Scholar
  21. 21.
    Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses. Crown Publishing Group (2011)Google Scholar
  22. 22.
    Burba, D.: Agile by Design: Integrating Design Thinking and Agile Approaches Helps Organizations Find and Build the Right Customer-focused Solution (2016)Google Scholar
  23. 23.
    Komssi, M., Pichlis, D., Raatikainen, M., Kindström, K., Järvinen, J.: What are hackathons for? IEEE Softw. 32, 60–67 (2015). Scholar
  24. 24.
    Cooper, R.G.: Perspective third-generation new product processes. J. Prod. Innov. Manag. 11, 3–14 (1994). Scholar
  25. 25.
    Cascini, G., Rissone, P., Rotini, F., Russo, D.: Systematic design through the integration of TRIZ and optimization tools. Procedia Eng. 9, 674–679 (2011). Scholar
  26. 26.
    Brad, S., Mocan, B., Brad, E., Fulea, M.: Leading innovation to improve complex process performances by systematic problem analysis with TRIZ. TRIZ Knowl.-Based Innov. Sci. Ind. 131, 1121–1129 (2015). Scholar
  27. 27.
    Terninko, J., Zusman, A., Zlotin, B.: Systematic Innovation: An Introduction to TRIZ, 1st edn. CRC Press, Boca Raton (1998)CrossRefGoogle Scholar
  28. 28.
    Livotov, P.: Method for quantitative evaluation of innovation tasks for technical systems, products and processes. In: ETRIA World Conference 2008 “Synthesis in Innovation”. University of Twente, Entschede, The Netherlands, pp. 197–199 (2008)Google Scholar
  29. 29.
    Casner, D., Houssin, R., Renaud, J., Knittel, D.: A multiobjective optimization framework for the embodiment design of mechatronic products based on morphological and design structure matrices. In: Bouras, A., Eynard, B., Foufou, S., Thoben, K.-D. (eds.) PLM 2015. IAICT, vol. 467, pp. 813–825. Springer, Cham (2016). Scholar
  30. 30.
    Chinkatham, T., Cavallucci, D.: Early feasibility evaluation of solution concepts in an inventive design method framework: approach and support tool. Comput. Ind. 67, 1–16 (2015). Scholar
  31. 31.
    Souili, A., Cavallucci, D., Rousselot, F., Zanni, C.: Starting from patents to find inputs to the problem graph model of IDM-TRIZ. TRIZ Knowl.-Based Innov. Sci. Ind. 131, 150–161 (2015). Scholar
  32. 32.
    Sun, X., Houssin, R., Renaud, J., Gardoni, M.: Integrating user information into design process to solve contradictions in product usage. Procedia CIRP 39, 166–172 (2016). Scholar
  33. 33.
    Houssin, R., Coulibaly, A.: An approach to solve contradiction problems for the safety integration in innovative design process. Comput. Ind. 62, 398–406 (2011). Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Didier Casner
    • 1
  • Achille Souili
    • 1
    • 2
  • Rémy Houssin
    • 1
    Email author
  • Jean Renaud
    • 2
  1. 1.ICube – CSIP TeamStrasbourg CedexFrance
  2. 2.INSA StrasbourgStrasbourg CedexFrance

Personalised recommendations