Automatic Extraction and Ranking of Systems of Contradictions Out of a Design of Experiments

  • Hicham Chibane
  • Sébastien DuboisEmail author
  • Roland De Guio
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 541)


This paper shows to what extent data used in design optimization process and TRIZ based models of contradictions can benefit from each other. New design often starts by optimizing existing systems by experimental and numerical means. This approach requires building a model linking on the one hand, a set of Action Parameters; and on the other hand, Evaluation Parameters measuring the quality of a solution. When none of the solutions satisfy the objectives, a redesign of the system is required. Our hypothesis in this paper is that the analysis of experimental or simulation data, can be used as input to automatically extract systems of contradictions, and moreover that it can help to make a ranking of these systems of contradictions.

In the article 3 ways to extract, out of Design of Experiments, and to prioritize Generalized Systems of Contradictions will be presented. These methods will be illustrated throughout a case study related to a cutting process.


Generalized Systems of Contradictions Design of Experiments Cross-fertilization optimization-invention 


  1. 1.
    Box, G.E.P., Draper, N.R.: Response Surfaces, Mixtures, and Ridge Analyses: Probability and Statistics, 2nd edn. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  2. 2.
    Cohen, J., Cohen, P., West, S.G., et al.: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd edn. Lawrence erlbaum Associates, Mahwah, London (2002)Google Scholar
  3. 3.
    Montgomery, D.C.: Design and Analysis of Experiments, 4th edn. Wiley, New York (1997)zbMATHGoogle Scholar
  4. 4.
    Box, G.E.P., Wilson, K.B.: On the experimental attainment of optimum conditions. J. Roy. Stat. Soc.: Ser. B (Methodol.) 13(1), 1–45 (1951)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Box, G., Hunter, J.S.: MultiFactor experimental designs for exploring response surfaces. Ann. Math. Stat. 28, 195–242 (1957)CrossRefGoogle Scholar
  6. 6.
    Altshuller, G.S.: Creativity as an Exact Science. Gordon and Breach, New York (1988)Google Scholar
  7. 7.
    Altshuller, G.S.: The Innovation Algorithm: TRIZ Systematic Innovation and Technical Creativity. Technical Innovation Center, Inc., Worcester (1999)Google Scholar
  8. 8.
    Khomenko, N., De Guio, R., Lelait, L., et al.: A framework for OTSM-TRIZ based computer support to be used in complex problem management. Int. J. Comput. Appl. Technology. 30(1), 88–104 (2007). (spécial issue Trends in computer aided innovation)CrossRefGoogle Scholar
  9. 9.
    Dubois, S., Eltzer, T., De Guio, R.: A dialectical based model coherent with inventive and optimization problems. Comput. Ind. 60(8), 575–583 (2009)CrossRefGoogle Scholar
  10. 10.
    Dubois, S., Rasovska, I., De Guio, R.: Interpretation of a general model for inventive problems, the generalized system of contradictions. In: Roy, R., Shehab, E. (eds.) Competitive Design. Proceedings of the 19th CIRP Design Conference, pp. 271–276. Cranfield University Press, Cranfield (2009)Google Scholar
  11. 11.
    Lin, L., Rasovska, I., De Guio, R., et al.: Algorithm for identifying generalized technical contradictions in experiments. J. Eur. Systèmes Autom. (JESA) 47(4–8), 563–588 (2013)CrossRefGoogle Scholar
  12. 12.
    Lin, L., Dubois, S., De Guio, R., et al.: An exact algorithm to extract the generalized physical contradiction. Int. J. Interact. Des. Manuf. (IJIDeM) 9(3), 185–191 (2014)CrossRefGoogle Scholar
  13. 13.
    Dubois, S., Lin, L., De Guio, R., Rasovska, I.: From simulation to invention, beyond the pareto-frontier. In: Husung, S., Weber, C., CantaMESsa, M., Cascini, G., Marjanovic, D., Graziosi, S. (eds.) 20th International Conference on Engineering Design (ICED) 2015, pp. 245–254. Design Society, Milano (2015)Google Scholar
  14. 14.
    Lin, L., Rasovska, I., De Guio, R., Dubois, S.: Optimization methods for inventive design. TRIZ – The Theory of Inventive Problem Solving, pp. 151–185. Springer, Cham (2017). Scholar
  15. 15.
    Chibane, H.: Contribution à l’optimisation multi-objectif des paramètres de coupe en usinage et apport de l ‘analyse vibratoire: application aux matériaux métalliques et composites. In: Mécanique 2013. Centre-Val de Loire, Tours (2013)Google Scholar
  16. 16.
    Morandeau, A.: Méthodologie de caractérisation et de conception d’un outil coupant à plaquettes amovibles pour l’usinage de matériaux composites aéronautiques: application aux opérations de surfaçage. In : Mécanique 2012. Université François Rabelais, Tours (2012)Google Scholar
  17. 17.
    Chibane, H., Serra, R., Leroy, R.: Optimal milling conditions of aeronautical composite material under temperature, forces and vibration parameters. J. Compos. Mater. 51(24), 3453–3463 (2017)CrossRefGoogle Scholar
  18. 18.
    Chibane, H., Morandeau, A., Serra, R., et al.: Optimal milling conditions for carbon/epoxy composite material using damage and vibration analysis. Int. J. Adv. Manuf. Technology. 68(5), 1111–1121 (2013)CrossRefGoogle Scholar
  19. 19.
    Morandeau, A., Chibane, H., Bouchou, A., et al.: Machining carbon fibre reinforced plastics: lead angle effect. Int. J. Mach. Mach. Materials. 13(2/3), 311–330 (2013)Google Scholar
  20. 20.
    Cochran, W.G., Cox, G.M.: Experimental Designs, 2nd edn. Wiley, Hoboken (1992)zbMATHGoogle Scholar
  21. 21.
    Safety: Turning Catalog Safety 2007. TURN-CAT (2007)Google Scholar
  22. 22.
    Dubois, S., De Guio, R., Rasovska, I., et al.: From simulation to inventive problem resolution, a global method. In: Škec, S., et al. (eds.) 21st International Conference on Engineering Design (ICED 17) 2017, Vancouver, Canada, pp. 503–512 (2017)Google Scholar
  23. 23.
    Vapnik, V.: The Nature of Statistical Learning Theory. Information Science and Statistics. Springer, New York (1995). Scholar
  24. 24.
    Bach, S., De Guio, R., Gartiser, N.: Combining discrete event simulation, data analysis, and TRIZ for fleet optimization. J. Eur. TRIZ Assoc. INNOVATOR 4(2), 47–62 (2017)Google Scholar
  25. 25.
    Rasovska, I., De Guio, R., Dubois, S.: Using dominance relation to identify relevant generalized technical contradictions in innovative design. In: IESM 2017, Sarrebruck, Germany (2017)Google Scholar
  26. 26.
    Dubois, S., Chibane, H., De Guio, R., et al.: From simulation to contradictions, different ways to formulate innovation directions. In: ETRIA TRIZ Future Conference 2017, Lappeenranta, Finland (2017)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Hicham Chibane
    • 1
  • Sébastien Dubois
    • 1
    Email author
  • Roland De Guio
    • 1
  1. 1.CSIP, ICube Laboratory, INSA de StrasbourgStrasbourgFrance

Personalised recommendations