Skip to main content

Preserving Liveness Guarantees from Synchronous Communication to Asynchronous Unstructured Low-Level Languages

  • Conference paper
  • First Online:
Formal Methods and Software Engineering (ICFEM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11232))

Included in the following conference series:

  • 1009 Accesses

Abstract

In the implementation of abstract synchronous communication in asynchronous unstructured low-level languages, e.g. using shared variables, the preservation of safety and especially liveness properties is a hitherto open problem due to inherently different abstraction levels. Our approach to overcome this problem is threefold: First, we present our notion of handshake refinement with which we formally prove the correctness of the implementation relation of a handshake protocol. Second, we verify the soundness of our handshake refinement, i.e., all safety and liveness properties are preserved to the lower level. Third, we apply our handshake refinement to show the correctness of all implementations that realize the abstract synchronous communication with the handshake protocol. To this end, we employ an exemplary language with asynchronous shared variable communication. Our approach is scalable and closes the verification gap between different abstraction levels of communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    That mutexes and signals are only accessed from the corresponding send and receive blocks can be checked syntactically.

  2. 2.

    For a complete formal version we refer to our Technical Report [2].

  3. 3.

    A more detailed proof can be found in our Technical Report [2].

References

  1. Basu, S., Bultan, T., Ouederni, M.: Synchronizability for verification of asynchronously communicating systems. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 56–71. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9_5

    Chapter  MATH  Google Scholar 

  2. Berg, N., Göthel, T., Glesner, S., Danziger, A.: Technical report accompanying: preserving liveness guarantees from synchronous communication to asynchronous unstructured low-level languages. DepositOnce (2018). https://doi.org/10.14279/depositonce-7192

  3. Brookes, S.D.: On the relationship of CCS and CSP. In: Diaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 83–96. Springer, Heidelberg (1983). https://doi.org/10.1007/BFb0036899

    Chapter  Google Scholar 

  4. Broy, M., Olderog, R.: Trace-oriented models of concurrency. In: Handbook of Process Algebra, chap. 2. Elsevier (2001)

    Chapter  Google Scholar 

  5. de Frutos-Escrig, D., Gregorio-Rodríguez, C.: Process equivalences as global bisimulations. JUCS 12(11), 1521–1550 (2006)

    Google Scholar 

  6. Gardner, W.B.: Bridging CSP and C++ with selective formalism and executable specifications. In: Proceedings of the MEMOCODE 2003, p. 237. IEEE (2003)

    Google Scholar 

  7. Jähnig, N., Göthel, T., Glesner, S.: A denotational semantics for communicating unstructured code. In: Proceedings of the FESCA 2015. EPTCS, vol. 178, pp. 9–21 (2015)

    Article  Google Scholar 

  8. Jähnig, N., Göthel, T., Glesner, S.: Refinement-based verification of communicating unstructured code. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp. 61–75. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41591-8_5

    Chapter  Google Scholar 

  9. Peeters, A.: Implementation of handshake components. In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential Processes. The First 25 Years. LNCS, vol. 3525, pp. 98–132. Springer, Heidelberg (2005). https://doi.org/10.1007/11423348_7

    Chapter  Google Scholar 

  10. Rensink, A., Gorrieri, R.: Action refinement as an implementation relation. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997. LNCS, vol. 1214, pp. 772–786. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0030640

    Chapter  Google Scholar 

  11. Roscoe, A.W.: Understanding Concurrent Systems. TCS. Springer, London (2010). https://doi.org/10.1007/978-1-84882-258-0

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Berg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berg, N., Göthel, T., Danziger, A., Glesner, S. (2018). Preserving Liveness Guarantees from Synchronous Communication to Asynchronous Unstructured Low-Level Languages. In: Sun, J., Sun, M. (eds) Formal Methods and Software Engineering. ICFEM 2018. Lecture Notes in Computer Science(), vol 11232. Springer, Cham. https://doi.org/10.1007/978-3-030-02450-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02450-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02449-9

  • Online ISBN: 978-3-030-02450-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics