Skip to main content

Estimating the Human Influence on Tropical Cyclone Intensity as the Climate Changes

  • Chapter
  • First Online:
Hurricane Risk

Part of the book series: Hurricane Risk ((HR,volume 1))

Abstract

Quantifying the human influence on individual extreme weather events is a new and rapidly developing science. Understanding the influence of climate change on tropical cyclones poses special challenges due to their intensities and scales. We present a method designed to overcome these challenges using high-resolution hindcasts of individual tropical cyclones under their actual large-scale meteorological conditions, counterfactual conditions without human influences on the climate system, and scenarios of increased climate change. Two practical case studies are presented along with a discussion of the conditions and limitations of attribution statements that can be made with this hindcast attribution method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The CAM5 contribution to the C20C+ experiment consisted of 100 simulations in both the factual and counterfactual scenarios. We also repeated this attribution analysis with the MIROC5 contribution finding the same behavior as detailed here.

References

  • Angelil O, Stone D, Wehner M, Paciorek CJ, Krishnan H, Collins W (2017) An independent assessment of anthropogenic attribution statements for recent extreme weather events. J Clim 30:5–16. https://doi.org/10.1175/JCLI-D-16-0077.1

    Article  Google Scholar 

  • Bacmeister JT, Reed KA, Hannay C, Lawrence PJ, Bates SC, Truesdale JE, Rosenbloom NA, Levy MN (2018) Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Clim Chang 146:547–560. https://doi.org/10.1007/s10584-016-1750-x

    Article  Google Scholar 

  • Bassill NP (2014) Accuracy of early GFS and ECMWF Sandy (2012) track forecasts: evidence for a dependence on cumulus parameterization. Geophys Res Lett 41:3274–3281. https://doi.org/10.1002/2014GL059839

    Article  Google Scholar 

  • Bister M, Emanuel K (1998) Dissipative heating and hurricane intensity. Meteorol Atmos Phys 65:223–240

    Article  Google Scholar 

  • Davis C, Wang W, Chen SS, Chen Y, Corbosiero K, DeMaria M, Dudhia J, Holland G, Klemp J, Michalakes J, Reeves H, Rotunno R, Snyder C, Xiao Q (2008) Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon Weather Rev 136:1990–2005

    Article  Google Scholar 

  • Dennis JM, Edwards J, Evans KJ, Guba O, Lauritzen PH, Mirin AA, St-Cyr A, Taylor MA, Worley PH (2011) CAMSE: a scalable spectral element dynamical core for the community atmosphere model. Int J High Perform Comput Appl 26(1):74–89. https://doi.org/10.1177/1094342011428142

    Article  Google Scholar 

  • Easterling DR, Kunkel KE, Wehner MF, Sun L (2016) Detection and attribution of climate extremes in the observed record. Weather Clim Extremes 11:17–27. https://doi.org/10.1016/j.wace.2016.01.001

    Article  Google Scholar 

  • Ebert-Uphoff I, Deng Y (2012) Causal discovery for climate research using graphical models. J Clim 25(17):5648–5665

    Article  Google Scholar 

  • Emanuel KA (1987) The dependence of hurricane intensity on climate. Nature 326:483–485

    Article  Google Scholar 

  • Emanuel K (2017) Assessing the present and future probability of hurricane Harveys rainfall. Proc Natl Acad Sci 114(48):12681–12684. https://doi.org/10.1073/pnas.1716222114

    Article  CAS  Google Scholar 

  • Emanuel KA, Solomon S, Folini D, Davis S, Cagnazzo C (2013) Influence of tropical tropopause layer cooling on Atlantic hurricane activity. J Clim 26:2288–2301. https://doi.org/10.1175/JCLI-D-12-00242.1

    Article  Google Scholar 

  • Granger CW (1969) Investigating causal relations by econometric models and cross spectral methods. Econometrica 37(3):424–438. https://doi.org/10.2307/1912791

    Article  Google Scholar 

  • Hannart A, Pearl J, Otto FE, Naveau P, Ghil M (2016) Causal counterfactual theory for the attribution of weather and climate-related events. Bull Am Meteor Soc 97:99–110. https://doi.org/10.1175/BAMS-D-14-00034.1

    Article  Google Scholar 

  • Haustein K, Otto FEL, Uhe P, Schaller N, Allen MR, Hermanson L, Christidis M, McLean P, Cullen H (2016) Real-time extreme weather event attribution with forecast seasonal SSTs. Environ Rev Lett 11:064006. https://doi.org/10.1088/1748-9326/11/6/064006

    Article  Google Scholar 

  • Held IM, Zhao M (2011) The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures. J Clim 24:5353–5364. https://doi.org/10.1175/JCLI-D-11-00050.1

    Article  Google Scholar 

  • Herring SC, Hoerling MP, Peterson TC, Stott PA (eds) (2014) Explaining extreme events of 2013 from a climate perspective. Bull Am Meteorol Soc 95(9):S1–S96

    Google Scholar 

  • Herring SC, Hoerling MP, Kossin JP, Peterson TC, Stott PA (eds) (2015) Explaining extreme events of 2014 from a climate perspective. Bull Am Meteorol Soc 96(12):S1–S172

    Google Scholar 

  • Herring SC, Hoell A, Hoerling MP, Kossin JP, Schreck CJ, Stott PA (2016) Explaining extreme events of 2015 from a climate perspective. Bull Am Meteorol Soc 97:S1–S145

    Google Scholar 

  • Huang P, Lin II, Chou C, Huang RH (2015) Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nat Commun 6:7188. https://doi.org/10.1038/ncomms8188

    Article  CAS  Google Scholar 

  • Ito R, Takemi T, Arakawa O (2016) A possible reduction in the severity of typhoon wind in the northern part of Japan under global warming: a case study. Sci Online Let Atmos 12:100–105. https://doi.org/10.2151/sola.2016-023

    Article  Google Scholar 

  • Jeon S, Paciorek CJ, Wehner MF (2016) Quantile-based bias correction and uncertainty quantification of extreme event attribution statements. Weather Clim Extremes 12:24–32. https://doi.org/10.1016/j.wace.2016.02.001

    Article  Google Scholar 

  • Kaplan J, DeMaria M, Knaff JA (2010) A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Weather Forecast 25:220–241

    Article  Google Scholar 

  • Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ (2010) The international best track archive for climate stewardship (IBTrACS). Bull Am Meteorol Soc 91(3):363–376. https://doi.org/10.1175/2009BAMS2755.1

    Article  Google Scholar 

  • Knutson T (2017) Detection and attribution methodologies overview. In: Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK (eds) Climate science special report: fourth national climate assessment, volume I. U.S. Global Change Research Program, Washington, DC, pp 443–451. https://doi.org/10.7930/J0319T2J

    Chapter  Google Scholar 

  • Knutson TR, Sirutis JJ, Zhao M, Tuleya RE, Bender M, Vecchi GA, Villarini G, Chavas D (2015) Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J Clim 28:7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1

    Article  Google Scholar 

  • Kossin JP, Hall T, Knutson T, Kunkel KE, Trapp RJ, Waliser DE, Wehner MF (2017) Extreme storms. In: Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK (eds) Climate science special report: fourth national climate assessment, volume I. U.S. Global Change Research Program, Washington, DC, pp 257–276. https://doi.org/10.7930/J07S7KXX

    Chapter  Google Scholar 

  • Lackmann GM (2015) Hurricane Sandy before 1900 and after 2100. Bull Am Meteorol Soc 96:547–559

    Article  Google Scholar 

  • Landsea CW, Franklin JL (2013) Atlantic hurricane database uncertainty and presentation of a new database format. Mon Weather Rev 141:3576–3592

    Article  Google Scholar 

  • Landsea CW et al (2004) The Atlantic Hurricane Database Re-analysis Project: documentation for the 1851–1910 alterations and additions to the HURDAT database. In: Murnane RJ, Liu K-B (eds) Hurricanes and typhoons: past, present and future. Columbia University Press, New York, pp 177–221

    Google Scholar 

  • Lum T, Margesson R (2014) Typhoon Haiyan (Yolanda): U.S. and international response to Philippines disaster. Curr Polit Econ South 23:209–246

    Google Scholar 

  • Magnusson L, Bidlot J-R, Lang STK, Thorpe A, Wedi N, Yamaguchi M (2014) Evaluation of medium-range forecasts for Hurricane Sandy. Mon Weather Rev 142:1962–1981. https://doi.org/10.1175/MWR-D-13-00228.1

    Article  Google Scholar 

  • Murakami H, Sugi M (2010) Effect of model resolution on tropical cyclone climate projections. Sci Online Lett Atmos 6:73–76. https://doi.org/10.2151/sola.2010-019

    Article  Google Scholar 

  • Murakami H, Wang Y, Yoshimura H, Mizuta R, Sugi M, Shindo E, Adachi Y, Yukimoto S, Hosaka M, Kusunoki S, Ose T, Kitoh A (2012) Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J Clim 25:3237–3260. https://doi.org/10.1175/JCLI-D-11-00415.1

    Article  Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine (2016) Attribution of extreme weather events in the context of climate change. The National Academies Press, Washington, DC. https://doi.org/10.17226/21852

    Book  Google Scholar 

  • Neale RB et al (2012) Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-4861STR, National Center for Atmospheric Research. http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf

  • Oouchi K, Yoshimura J, Yoshimura H, Mizuta R, Kusunoki S, Noda S (2006) Tropical cyclone climatology in a global-warming climate as simulated in a 20 km mesh global atmospheric model: frequency and wind intensity analyses. J Meteor Soc Jpn 84(2):259–276

    Article  Google Scholar 

  • Otto FEL, Massey N, van Oldenborgh GJ, Jones RG, Allen MR (2012) Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys Res Lett 39:L04702

    Article  Google Scholar 

  • Pall P, Aina T, Stone DA, Stott PA, Nozawa T, Hilberts AGJ, Lohmann D, Allen MR (2011) Anthropogenic greenhouse gas contribution to UK autumn flood risk. Nature 470:382–385

    Article  CAS  Google Scholar 

  • Pall P, Wehner M, Stone D (2014) Probabilistic extreme event attribution. In: Grojahn R, Li J, Swinbank R, Volkert H (eds) Dynamics and predictability of large-scale, high-impact weather and climate events. Cambridge University Press, Cambridge, pp 37–46 ISBN 978-1-107-07142-1

    Google Scholar 

  • Pall P, Patricola CM, Wehner MF, Stone DA, Paciorek C, Collins WD (2017) Diagnosing anthropogenic contributions to heavy Colorado rainfall in September 2013. Weather Clim Extremes 17:1–6. https://doi.org/10.1016/j.wace.2017.03.004

    Article  Google Scholar 

  • Patricola CM, Wehner MF (2018) Anthropogenic Influences on Major Tropical Cyclone Events. To appear Nature.

    Google Scholar 

  • Patricola CM, Saravanan R, Chang P (2014) The impact of the El Niño-Southern oscillation and Atlantic meridional mode on seasonal Atlantic tropical cyclone activity. J Clim 27:5311–5328

    Article  Google Scholar 

  • Patricola CM, Chang P, Saravanan R (2016) Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Niño. Nat Geosci 9:155–160

    Article  CAS  Google Scholar 

  • Patricola CM, Saravanan R, Chang P (2017) A teleconnection between Atlantic sea surface temperature and eastern and central North Pacific tropical cyclones. Geophys Res Lett 44:1167–1174

    Article  Google Scholar 

  • Pearl J (2000) Causality: models, reasoning, and inference. Cambridge University Press, New York

    Google Scholar 

  • Peterson TC, Stott PA, Herring S (eds) (2012) Explaining extreme events of 2011 from a climate perspective. Bull Am Meteor Soc 93:1041–1067

    Google Scholar 

  • Peterson TC, Hoerling MP, Stott PA, Herring S (eds) (2013) Explaining extreme events of 2012 from a climate perspective. Bull Am Meteorol Soc 94:S1–S74

    Google Scholar 

  • Rappaport EN et al (2009) Advances and challenges at the National Hurricane Center. Weather Forecast 24:395–419. https://doi.org/10.1175/2008WAF2222128.1

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496

    Article  Google Scholar 

  • Risser MD, Wehner MF (2017) Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation in the Houston, Texas region during hurricane Harvey. Geophys Rev Lett 44:12457–12464. https://doi.org/10.1002/2017GL075888

    Article  Google Scholar 

  • Risser MD, Stone DA, Paciorek CJ, Wehner MF, Angelil O (2017) Quantifying the effect of interannual ocean variability on the attribution of extreme climate events to human influence. Clim Dyn 49:3051–3073. https://doi.org/10.1007/s00382-016-3492-x

    Article  Google Scholar 

  • Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057

    Article  Google Scholar 

  • Santer BD, Wehner MF, Wigley TML, Sausen R, Meehl GA, Ammann C, Arblaster J, Washington WM, Boyle JS, Brueggemann W (2003) Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301:479–483

    Article  CAS  Google Scholar 

  • Santer BD, Wigley TML, Mears C, Wentz FJ, Klein SA, Seidel DJ, Taylor KE, Thorne PW, Wehner MF, Gleckler PJ, Boyle JS, Collins W, Dixon KW, Doutriaux C, Free M, Fu Q, Hansen JE, Jones GS, Ruedy R, Karl TR, Lanzante JR, Meehl GA, Ramaswamy V, Russell G, Schmidt GA (2005) Amplification of surface temperature trends and variability in the tropical atmosphere. Science 309:1551–1556

    Article  CAS  Google Scholar 

  • Schär C, Frei C, Lüthi D, Davies HC (1996) Surrogate climate-change scenarios for regional climate models. Geophys Res Lett 23:669–672

    Article  Google Scholar 

  • Shepherd TG (2016) A common framework for approaches to extreme event attribution. Curr Clim Chang Rep 2:28–38

    Article  Google Scholar 

  • Shutts G (2005) A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q J Roy Meteor Soc 131:3079–3102

    Article  Google Scholar 

  • Skamarock WC et al (2008) A description of the advanced research WRF version 3, NCAR Tech Note, NCAR/TN–475+STR. National Center for Atmospheric Research, Boulder

    Google Scholar 

  • Stone DA, Risser MD, Ang'elil OM, Wehner MF, Cholia S, Keen N, Krishnan H, O’Brien TA, Paciorek CJ, Collins WD (2017) A basis set for exploration of sensitivity to prescribed ocean conditions for estimating human contributions to extreme weather in CAM5.1-1degree. Weather Clim Extremes 19:10–19. https://doi.org/10.1016/j.wace.2017.12.003

    Article  Google Scholar 

  • Stone DA, Christidis N, Folland C, Perkins-Kirkpatrick S, Perlwitz J, Shiogama H, Wehner MF, Wolski P, Cholia S, Krishnan H, Murray D, Ang’elil O, Beyerle U, Ciavarella A, Dittus A, Quan X-W (2018) Experiment design of the International CLIVAR C20C+ Detection and Attribution Project. Weather Clim Extremes. in preparation

    Google Scholar 

  • Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–614

    Article  CAS  Google Scholar 

  • Stott PA, Christidis N, Otto FEL, Sun Y, Vanderlinden J-P, van Oldenborgh GJ, Vautard R, von Storch H, Walton P, Yiou P, Zwiers FW (2016) Attribution of extreme weather and climate-related events. WIREs Clim Chang 7:23–41. https://doi.org/10.1002/wcc.380

    Article  Google Scholar 

  • Sugi M, Murakami H, Yoshimura J (2009) A reduction in global tropical cyclone frequency due to global warming. Sci Online Lett Atmos 5:164–167. https://doi.org/10.2151/sola.2009-042

    Article  Google Scholar 

  • Takayabu I, Hibino K, Sasaki H, Shiogama H, Mori N, Shibutani Y, Takemi T (2015) Climate change effects on the worst-case storm surge: a case study of Typhoon Haiyan. Environ Res Lett 10:089502. https://doi.org/10.1088/1748-9326/10/8/089502

    Article  Google Scholar 

  • Takemi T, Ito R, Arakawa O (2016) Robustness and uncertainty of projected changes in the impacts of Typhoon Vera (1959) under global warming. Hydrol Res Lett 10(3):88–94. https://doi.org/10.3178/hrl.10.88

    Article  Google Scholar 

  • van Oldenborgh GJ, van der Wiel K, Sebastian A, Singh R, Arrighi J, Otto F, Haustein K, Li S, Vecchi G, Cullen H (2017) Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environ Res Lett 12:124009

    Article  Google Scholar 

  • Vautard R, Yiou P, Otto F, Stott P, Christidis N, van Oldenborgh GJ, Schaller N (2016) Attribution of human-induced dynamical and thermodynamical contributions in extreme weather events. Environ Res Lett 11:114009. https://doi.org/10.1088/1748-9326/11/11/114009

    Article  Google Scholar 

  • Walsh KJE, Camargo S, Vecchi G, Daloz AS, Elsner J, Emanuel K, Horn M, Lim Y-K, Roberts M, Patricola C, Scoccimarro E, Sobel A, Strazzo S, Villarini G, Wehner M, Zhao M, Kossin J, LaRow T, Oouchi K, Schubert S, Wang H, Bacmeister J, Chang P, Chauvin F, Jablonowski C, Kumar A, Murakami H, Ose T, Reed K, Saravanan R, Yamada Y, Zarzycki C, Vidale P-L, Jonas J, Henderson N (2015) Hurricanes and climate: the U.S. CLIVAR working group on hurricanes. Bull Am Meteorol Soc 96:997–1017. https://doi.org/10.1175/BAMS-D-13-00242.1

    Article  Google Scholar 

  • Wang S-YS, Zhao L, Yoon J-H, Klotzbach P, Gillies RR (2018) Quantitative attribution of climate effects on Hurricane Harvey’s extreme rainfall in Texas. Environ Res Lett 13(5):054014. https://doi.org/10.1088/1748-9326/aabb85

    Article  Google Scholar 

  • Wehner MF, Reed K, Li F, Prabhat, Bacmeister J, Chen C-T, Paciorek C, Gleckler P, Sperber K, Collins WD, Gettelman A, Jablonowski C (2014) The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J Model Earth Syst 6:980–997. https://doi.org/10.1002/2013MS000276

    Article  Google Scholar 

  • Wehner MF, Prabhat, Reed K, Stone D, Collins WD, Bacmeister J (2015) Resolution dependence of future tropical cyclone projections of CAM5.1 in the US CLIVAR Hurricane Working Group idealized configurations. J Clim 28:3905–3925. https://doi.org/10.1175/JCLI-D-14-00311.1

    Article  Google Scholar 

  • Wehner M, Stone D, Mitchell D, Shiogama H, Fischer E, Graff LS, Kharin VV, Sanderson B, Krishnan H (2018a) Changes in extremely hot days under stabilized 1.5°C and 2.0°C global warming scenarios as simulated by the HAPPI multi-model ensemble. Earth Syst Dyn 9:299–311 https://www.earth-syst-dynam.net/9/299/2018/esd-9-299-2018.html

    Article  Google Scholar 

  • Wehner MF, Reed KA, Loring B, Stone D, Krishnan H (2018b) Changes in tropical cyclones under stabilized 1.5°C and 2.0°C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols. Earth Syst Dyn 9:187–195. https://doi.org/10.5194/esd-9-187-2018

    Article  Google Scholar 

  • Wing AA, Emanuel K, Solomon S (2015) On the factors affecting trends and variability in tropical cyclone potential intensity. Geophys Res Lett 42:8669–8677. https://doi.org/10.1002/2015GL066145

    Article  Google Scholar 

  • Xiang B, Lin S-J, Zhao M, Zhang S, Vecchi G, Li T, Jiang X, Harris L, Chen J-H (2015) Beyond weather time scale prediction for Hurricane Sandy and Super Typhoon Haiyan in a global climate model. Mon Weather Rev 143:524–535. https://doi.org/10.1175/MWR-D-14-00227.1

    Article  Google Scholar 

  • Zarzycki CM (2016) Tropical cyclone intensity errors associated with lack of two-way ocean coupling in high-resolution global simulations. J Clim 29:8589–8610

    Article  Google Scholar 

  • Zarzycki CM, Jablonowski C (2015) Experimental tropical cyclone forecasts using a variable-resolution global model. Mon Weather Rev 143:4012–4037. https://doi.org/10.1175/MWR-D-15-0159.1

    Article  Google Scholar 

  • Zarzycki CM et al (2014a) Using variable resolution meshes to model tropical cyclones in the Community Atmosphere Model. Mon Weather Rev 142:1221–1239. https://doi.org/10.1175/MWR-D-13-00179.1

    Article  Google Scholar 

  • Zarzycki CM et al (2014b) Aquaplanet experiments using CAM’s variable-resolution dynamical core. J Clim 27:5481–5503. https://doi.org/10.1175/JCLI-D-14-00004.1

    Article  Google Scholar 

  • Zhao M, Held IM, Lin SJ, Vecchi GA (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J Clim 22:6653–6678

    Article  Google Scholar 

  • Zhao M, Held IM, Vecchi GA, Scoccimarro E, Wang H, Wehner M, Lim Y-K, LaRow T, Camargo SJ, Walsh K, Gualdi S, Kumar A, Schubert S, Reed KA (2013) Robust direct effect of increasing atmospheric CO2 concentration on global tropical cyclone frequency – a multi-model inter-comparison. US CLIVAR Var Fall 2013 11(3):17–23

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Department of Energy Office of Science under contract number DE-AC02-05CH11231. This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

The National Center for Atmospheric Research is sponsored by the National Science Foundation. CMZ was partially supported under NSF’s Advanced Study Program (ASP).

This research used resources of the National Energy Research Scientific Computing Center (NERSC), also supported by the Office of Science of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Wehner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wehner, M.F., Zarzycki, C., Patricola, C. (2019). Estimating the Human Influence on Tropical Cyclone Intensity as the Climate Changes. In: Collins, J., Walsh, K. (eds) Hurricane Risk. Hurricane Risk, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-02402-4_12

Download citation

Publish with us

Policies and ethics