Advertisement

Hurricane Risk pp 235-260 | Cite as

Estimating the Human Influence on Tropical Cyclone Intensity as the Climate Changes

  • Michael F. WehnerEmail author
  • Colin Zarzycki
  • Christina Patricola
Chapter
Part of the Hurricane Risk book series (HR, volume 1)

Abstract

Quantifying the human influence on individual extreme weather events is a new and rapidly developing science. Understanding the influence of climate change on tropical cyclones poses special challenges due to their intensities and scales. We present a method designed to overcome these challenges using high-resolution hindcasts of individual tropical cyclones under their actual large-scale meteorological conditions, counterfactual conditions without human influences on the climate system, and scenarios of increased climate change. Two practical case studies are presented along with a discussion of the conditions and limitations of attribution statements that can be made with this hindcast attribution method.

Keywords

Tropical cyclone Climate change Attribution Modeling 

Notes

Acknowledgement

This work was supported by the Department of Energy Office of Science under contract number DE-AC02-05CH11231. This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

The National Center for Atmospheric Research is sponsored by the National Science Foundation. CMZ was partially supported under NSF’s Advanced Study Program (ASP).

This research used resources of the National Energy Research Scientific Computing Center (NERSC), also supported by the Office of Science of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231.

References

  1. Angelil O, Stone D, Wehner M, Paciorek CJ, Krishnan H, Collins W (2017) An independent assessment of anthropogenic attribution statements for recent extreme weather events. J Clim 30:5–16.  https://doi.org/10.1175/JCLI-D-16-0077.1 CrossRefGoogle Scholar
  2. Bacmeister JT, Reed KA, Hannay C, Lawrence PJ, Bates SC, Truesdale JE, Rosenbloom NA, Levy MN (2018) Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Clim Chang 146:547–560.  https://doi.org/10.1007/s10584-016-1750-x CrossRefGoogle Scholar
  3. Bassill NP (2014) Accuracy of early GFS and ECMWF Sandy (2012) track forecasts: evidence for a dependence on cumulus parameterization. Geophys Res Lett 41:3274–3281.  https://doi.org/10.1002/2014GL059839 CrossRefGoogle Scholar
  4. Bister M, Emanuel K (1998) Dissipative heating and hurricane intensity. Meteorol Atmos Phys 65:223–240CrossRefGoogle Scholar
  5. Davis C, Wang W, Chen SS, Chen Y, Corbosiero K, DeMaria M, Dudhia J, Holland G, Klemp J, Michalakes J, Reeves H, Rotunno R, Snyder C, Xiao Q (2008) Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon Weather Rev 136:1990–2005CrossRefGoogle Scholar
  6. Dennis JM, Edwards J, Evans KJ, Guba O, Lauritzen PH, Mirin AA, St-Cyr A, Taylor MA, Worley PH (2011) CAMSE: a scalable spectral element dynamical core for the community atmosphere model. Int J High Perform Comput Appl 26(1):74–89.  https://doi.org/10.1177/1094342011428142 CrossRefGoogle Scholar
  7. Easterling DR, Kunkel KE, Wehner MF, Sun L (2016) Detection and attribution of climate extremes in the observed record. Weather Clim Extremes 11:17–27.  https://doi.org/10.1016/j.wace.2016.01.001 CrossRefGoogle Scholar
  8. Ebert-Uphoff I, Deng Y (2012) Causal discovery for climate research using graphical models. J Clim 25(17):5648–5665CrossRefGoogle Scholar
  9. Emanuel KA (1987) The dependence of hurricane intensity on climate. Nature 326:483–485CrossRefGoogle Scholar
  10. Emanuel K (2017) Assessing the present and future probability of hurricane Harveys rainfall. Proc Natl Acad Sci 114(48):12681–12684.  https://doi.org/10.1073/pnas.1716222114 CrossRefGoogle Scholar
  11. Emanuel KA, Solomon S, Folini D, Davis S, Cagnazzo C (2013) Influence of tropical tropopause layer cooling on Atlantic hurricane activity. J Clim 26:2288–2301.  https://doi.org/10.1175/JCLI-D-12-00242.1 CrossRefGoogle Scholar
  12. Granger CW (1969) Investigating causal relations by econometric models and cross spectral methods. Econometrica 37(3):424–438.  https://doi.org/10.2307/1912791 CrossRefGoogle Scholar
  13. Hannart A, Pearl J, Otto FE, Naveau P, Ghil M (2016) Causal counterfactual theory for the attribution of weather and climate-related events. Bull Am Meteor Soc 97:99–110.  https://doi.org/10.1175/BAMS-D-14-00034.1 CrossRefGoogle Scholar
  14. Haustein K, Otto FEL, Uhe P, Schaller N, Allen MR, Hermanson L, Christidis M, McLean P, Cullen H (2016) Real-time extreme weather event attribution with forecast seasonal SSTs. Environ Rev Lett 11:064006.  https://doi.org/10.1088/1748-9326/11/6/064006 CrossRefGoogle Scholar
  15. Held IM, Zhao M (2011) The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures. J Clim 24:5353–5364.  https://doi.org/10.1175/JCLI-D-11-00050.1 CrossRefGoogle Scholar
  16. Herring SC, Hoerling MP, Peterson TC, Stott PA (eds) (2014) Explaining extreme events of 2013 from a climate perspective. Bull Am Meteorol Soc 95(9):S1–S96Google Scholar
  17. Herring SC, Hoerling MP, Kossin JP, Peterson TC, Stott PA (eds) (2015) Explaining extreme events of 2014 from a climate perspective. Bull Am Meteorol Soc 96(12):S1–S172Google Scholar
  18. Herring SC, Hoell A, Hoerling MP, Kossin JP, Schreck CJ, Stott PA (2016) Explaining extreme events of 2015 from a climate perspective. Bull Am Meteorol Soc 97:S1–S145Google Scholar
  19. Huang P, Lin II, Chou C, Huang RH (2015) Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nat Commun 6:7188.  https://doi.org/10.1038/ncomms8188 CrossRefGoogle Scholar
  20. Ito R, Takemi T, Arakawa O (2016) A possible reduction in the severity of typhoon wind in the northern part of Japan under global warming: a case study. Sci Online Let Atmos 12:100–105.  https://doi.org/10.2151/sola.2016-023 CrossRefGoogle Scholar
  21. Jeon S, Paciorek CJ, Wehner MF (2016) Quantile-based bias correction and uncertainty quantification of extreme event attribution statements. Weather Clim Extremes 12:24–32.  https://doi.org/10.1016/j.wace.2016.02.001 CrossRefGoogle Scholar
  22. Kaplan J, DeMaria M, Knaff JA (2010) A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Weather Forecast 25:220–241CrossRefGoogle Scholar
  23. Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ (2010) The international best track archive for climate stewardship (IBTrACS). Bull Am Meteorol Soc 91(3):363–376.  https://doi.org/10.1175/2009BAMS2755.1 CrossRefGoogle Scholar
  24. Knutson T (2017) Detection and attribution methodologies overview. In: Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK (eds) Climate science special report: fourth national climate assessment, volume I. U.S. Global Change Research Program, Washington, DC, pp 443–451.  https://doi.org/10.7930/J0319T2J CrossRefGoogle Scholar
  25. Knutson TR, Sirutis JJ, Zhao M, Tuleya RE, Bender M, Vecchi GA, Villarini G, Chavas D (2015) Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J Clim 28:7203–7224.  https://doi.org/10.1175/JCLI-D-15-0129.1 CrossRefGoogle Scholar
  26. Kossin JP, Hall T, Knutson T, Kunkel KE, Trapp RJ, Waliser DE, Wehner MF (2017) Extreme storms. In: Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK (eds) Climate science special report: fourth national climate assessment, volume I. U.S. Global Change Research Program, Washington, DC, pp 257–276.  https://doi.org/10.7930/J07S7KXX CrossRefGoogle Scholar
  27. Lackmann GM (2015) Hurricane Sandy before 1900 and after 2100. Bull Am Meteorol Soc 96:547–559CrossRefGoogle Scholar
  28. Landsea CW, Franklin JL (2013) Atlantic hurricane database uncertainty and presentation of a new database format. Mon Weather Rev 141:3576–3592CrossRefGoogle Scholar
  29. Landsea CW et al (2004) The Atlantic Hurricane Database Re-analysis Project: documentation for the 1851–1910 alterations and additions to the HURDAT database. In: Murnane RJ, Liu K-B (eds) Hurricanes and typhoons: past, present and future. Columbia University Press, New York, pp 177–221Google Scholar
  30. Lum T, Margesson R (2014) Typhoon Haiyan (Yolanda): U.S. and international response to Philippines disaster. Curr Polit Econ South 23:209–246Google Scholar
  31. Magnusson L, Bidlot J-R, Lang STK, Thorpe A, Wedi N, Yamaguchi M (2014) Evaluation of medium-range forecasts for Hurricane Sandy. Mon Weather Rev 142:1962–1981.  https://doi.org/10.1175/MWR-D-13-00228.1 CrossRefGoogle Scholar
  32. Murakami H, Sugi M (2010) Effect of model resolution on tropical cyclone climate projections. Sci Online Lett Atmos 6:73–76.  https://doi.org/10.2151/sola.2010-019 CrossRefGoogle Scholar
  33. Murakami H, Wang Y, Yoshimura H, Mizuta R, Sugi M, Shindo E, Adachi Y, Yukimoto S, Hosaka M, Kusunoki S, Ose T, Kitoh A (2012) Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J Clim 25:3237–3260.  https://doi.org/10.1175/JCLI-D-11-00415.1 CrossRefGoogle Scholar
  34. National Academies of Sciences, Engineering, and Medicine (2016) Attribution of extreme weather events in the context of climate change. The National Academies Press, Washington, DC.  https://doi.org/10.17226/21852 CrossRefGoogle Scholar
  35. Neale RB et al (2012) Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-4861STR, National Center for Atmospheric Research. http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf
  36. Oouchi K, Yoshimura J, Yoshimura H, Mizuta R, Kusunoki S, Noda S (2006) Tropical cyclone climatology in a global-warming climate as simulated in a 20 km mesh global atmospheric model: frequency and wind intensity analyses. J Meteor Soc Jpn 84(2):259–276CrossRefGoogle Scholar
  37. Otto FEL, Massey N, van Oldenborgh GJ, Jones RG, Allen MR (2012) Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys Res Lett 39:L04702CrossRefGoogle Scholar
  38. Pall P, Aina T, Stone DA, Stott PA, Nozawa T, Hilberts AGJ, Lohmann D, Allen MR (2011) Anthropogenic greenhouse gas contribution to UK autumn flood risk. Nature 470:382–385CrossRefGoogle Scholar
  39. Pall P, Wehner M, Stone D (2014) Probabilistic extreme event attribution. In: Grojahn R, Li J, Swinbank R, Volkert H (eds) Dynamics and predictability of large-scale, high-impact weather and climate events. Cambridge University Press, Cambridge, pp 37–46 ISBN 978-1-107-07142-1Google Scholar
  40. Pall P, Patricola CM, Wehner MF, Stone DA, Paciorek C, Collins WD (2017) Diagnosing anthropogenic contributions to heavy Colorado rainfall in September 2013. Weather Clim Extremes 17:1–6.  https://doi.org/10.1016/j.wace.2017.03.004 CrossRefGoogle Scholar
  41. Patricola CM, Wehner MF (2018) Anthropogenic Influences on Major Tropical Cyclone Events. To appear Nature.Google Scholar
  42. Patricola CM, Saravanan R, Chang P (2014) The impact of the El Niño-Southern oscillation and Atlantic meridional mode on seasonal Atlantic tropical cyclone activity. J Clim 27:5311–5328CrossRefGoogle Scholar
  43. Patricola CM, Chang P, Saravanan R (2016) Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Niño. Nat Geosci 9:155–160CrossRefGoogle Scholar
  44. Patricola CM, Saravanan R, Chang P (2017) A teleconnection between Atlantic sea surface temperature and eastern and central North Pacific tropical cyclones. Geophys Res Lett 44:1167–1174CrossRefGoogle Scholar
  45. Pearl J (2000) Causality: models, reasoning, and inference. Cambridge University Press, New YorkGoogle Scholar
  46. Peterson TC, Stott PA, Herring S (eds) (2012) Explaining extreme events of 2011 from a climate perspective. Bull Am Meteor Soc 93:1041–1067Google Scholar
  47. Peterson TC, Hoerling MP, Stott PA, Herring S (eds) (2013) Explaining extreme events of 2012 from a climate perspective. Bull Am Meteorol Soc 94:S1–S74Google Scholar
  48. Rappaport EN et al (2009) Advances and challenges at the National Hurricane Center. Weather Forecast 24:395–419.  https://doi.org/10.1175/2008WAF2222128.1 CrossRefGoogle Scholar
  49. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496CrossRefGoogle Scholar
  50. Risser MD, Wehner MF (2017) Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation in the Houston, Texas region during hurricane Harvey. Geophys Rev Lett 44:12457–12464.  https://doi.org/10.1002/2017GL075888 CrossRefGoogle Scholar
  51. Risser MD, Stone DA, Paciorek CJ, Wehner MF, Angelil O (2017) Quantifying the effect of interannual ocean variability on the attribution of extreme climate events to human influence. Clim Dyn 49:3051–3073.  https://doi.org/10.1007/s00382-016-3492-x CrossRefGoogle Scholar
  52. Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057CrossRefGoogle Scholar
  53. Santer BD, Wehner MF, Wigley TML, Sausen R, Meehl GA, Ammann C, Arblaster J, Washington WM, Boyle JS, Brueggemann W (2003) Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301:479–483CrossRefGoogle Scholar
  54. Santer BD, Wigley TML, Mears C, Wentz FJ, Klein SA, Seidel DJ, Taylor KE, Thorne PW, Wehner MF, Gleckler PJ, Boyle JS, Collins W, Dixon KW, Doutriaux C, Free M, Fu Q, Hansen JE, Jones GS, Ruedy R, Karl TR, Lanzante JR, Meehl GA, Ramaswamy V, Russell G, Schmidt GA (2005) Amplification of surface temperature trends and variability in the tropical atmosphere. Science 309:1551–1556CrossRefGoogle Scholar
  55. Schär C, Frei C, Lüthi D, Davies HC (1996) Surrogate climate-change scenarios for regional climate models. Geophys Res Lett 23:669–672CrossRefGoogle Scholar
  56. Shepherd TG (2016) A common framework for approaches to extreme event attribution. Curr Clim Chang Rep 2:28–38CrossRefGoogle Scholar
  57. Shutts G (2005) A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q J Roy Meteor Soc 131:3079–3102CrossRefGoogle Scholar
  58. Skamarock WC et al (2008) A description of the advanced research WRF version 3, NCAR Tech Note, NCAR/TN–475+STR. National Center for Atmospheric Research, BoulderGoogle Scholar
  59. Stone DA, Risser MD, Ang'elil OM, Wehner MF, Cholia S, Keen N, Krishnan H, O’Brien TA, Paciorek CJ, Collins WD (2017) A basis set for exploration of sensitivity to prescribed ocean conditions for estimating human contributions to extreme weather in CAM5.1-1degree. Weather Clim Extremes 19:10–19.  https://doi.org/10.1016/j.wace.2017.12.003 CrossRefGoogle Scholar
  60. Stone DA, Christidis N, Folland C, Perkins-Kirkpatrick S, Perlwitz J, Shiogama H, Wehner MF, Wolski P, Cholia S, Krishnan H, Murray D, Ang’elil O, Beyerle U, Ciavarella A, Dittus A, Quan X-W (2018) Experiment design of the International CLIVAR C20C+ Detection and Attribution Project. Weather Clim Extremes. in preparationGoogle Scholar
  61. Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–614CrossRefGoogle Scholar
  62. Stott PA, Christidis N, Otto FEL, Sun Y, Vanderlinden J-P, van Oldenborgh GJ, Vautard R, von Storch H, Walton P, Yiou P, Zwiers FW (2016) Attribution of extreme weather and climate-related events. WIREs Clim Chang 7:23–41.  https://doi.org/10.1002/wcc.380 CrossRefGoogle Scholar
  63. Sugi M, Murakami H, Yoshimura J (2009) A reduction in global tropical cyclone frequency due to global warming. Sci Online Lett Atmos 5:164–167.  https://doi.org/10.2151/sola.2009-042 CrossRefGoogle Scholar
  64. Takayabu I, Hibino K, Sasaki H, Shiogama H, Mori N, Shibutani Y, Takemi T (2015) Climate change effects on the worst-case storm surge: a case study of Typhoon Haiyan. Environ Res Lett 10:089502.  https://doi.org/10.1088/1748-9326/10/8/089502 CrossRefGoogle Scholar
  65. Takemi T, Ito R, Arakawa O (2016) Robustness and uncertainty of projected changes in the impacts of Typhoon Vera (1959) under global warming. Hydrol Res Lett 10(3):88–94.  https://doi.org/10.3178/hrl.10.88 CrossRefGoogle Scholar
  66. van Oldenborgh GJ, van der Wiel K, Sebastian A, Singh R, Arrighi J, Otto F, Haustein K, Li S, Vecchi G, Cullen H (2017) Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environ Res Lett 12:124009CrossRefGoogle Scholar
  67. Vautard R, Yiou P, Otto F, Stott P, Christidis N, van Oldenborgh GJ, Schaller N (2016) Attribution of human-induced dynamical and thermodynamical contributions in extreme weather events. Environ Res Lett 11:114009.  https://doi.org/10.1088/1748-9326/11/11/114009 CrossRefGoogle Scholar
  68. Walsh KJE, Camargo S, Vecchi G, Daloz AS, Elsner J, Emanuel K, Horn M, Lim Y-K, Roberts M, Patricola C, Scoccimarro E, Sobel A, Strazzo S, Villarini G, Wehner M, Zhao M, Kossin J, LaRow T, Oouchi K, Schubert S, Wang H, Bacmeister J, Chang P, Chauvin F, Jablonowski C, Kumar A, Murakami H, Ose T, Reed K, Saravanan R, Yamada Y, Zarzycki C, Vidale P-L, Jonas J, Henderson N (2015) Hurricanes and climate: the U.S. CLIVAR working group on hurricanes. Bull Am Meteorol Soc 96:997–1017.  https://doi.org/10.1175/BAMS-D-13-00242.1 CrossRefGoogle Scholar
  69. Wang S-YS, Zhao L, Yoon J-H, Klotzbach P, Gillies RR (2018) Quantitative attribution of climate effects on Hurricane Harvey’s extreme rainfall in Texas. Environ Res Lett 13(5):054014.  https://doi.org/10.1088/1748-9326/aabb85 CrossRefGoogle Scholar
  70. Wehner MF, Reed K, Li F, Prabhat, Bacmeister J, Chen C-T, Paciorek C, Gleckler P, Sperber K, Collins WD, Gettelman A, Jablonowski C (2014) The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J Model Earth Syst 6:980–997.  https://doi.org/10.1002/2013MS000276 CrossRefGoogle Scholar
  71. Wehner MF, Prabhat, Reed K, Stone D, Collins WD, Bacmeister J (2015) Resolution dependence of future tropical cyclone projections of CAM5.1 in the US CLIVAR Hurricane Working Group idealized configurations. J Clim 28:3905–3925.  https://doi.org/10.1175/JCLI-D-14-00311.1 CrossRefGoogle Scholar
  72. Wehner M, Stone D, Mitchell D, Shiogama H, Fischer E, Graff LS, Kharin VV, Sanderson B, Krishnan H (2018a) Changes in extremely hot days under stabilized 1.5°C and 2.0°C global warming scenarios as simulated by the HAPPI multi-model ensemble. Earth Syst Dyn 9:299–311 https://www.earth-syst-dynam.net/9/299/2018/esd-9-299-2018.html CrossRefGoogle Scholar
  73. Wehner MF, Reed KA, Loring B, Stone D, Krishnan H (2018b) Changes in tropical cyclones under stabilized 1.5°C and 2.0°C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols. Earth Syst Dyn 9:187–195.  https://doi.org/10.5194/esd-9-187-2018 CrossRefGoogle Scholar
  74. Wing AA, Emanuel K, Solomon S (2015) On the factors affecting trends and variability in tropical cyclone potential intensity. Geophys Res Lett 42:8669–8677.  https://doi.org/10.1002/2015GL066145 CrossRefGoogle Scholar
  75. Xiang B, Lin S-J, Zhao M, Zhang S, Vecchi G, Li T, Jiang X, Harris L, Chen J-H (2015) Beyond weather time scale prediction for Hurricane Sandy and Super Typhoon Haiyan in a global climate model. Mon Weather Rev 143:524–535.  https://doi.org/10.1175/MWR-D-14-00227.1 CrossRefGoogle Scholar
  76. Zarzycki CM (2016) Tropical cyclone intensity errors associated with lack of two-way ocean coupling in high-resolution global simulations. J Clim 29:8589–8610CrossRefGoogle Scholar
  77. Zarzycki CM, Jablonowski C (2015) Experimental tropical cyclone forecasts using a variable-resolution global model. Mon Weather Rev 143:4012–4037.  https://doi.org/10.1175/MWR-D-15-0159.1 CrossRefGoogle Scholar
  78. Zarzycki CM et al (2014a) Using variable resolution meshes to model tropical cyclones in the Community Atmosphere Model. Mon Weather Rev 142:1221–1239.  https://doi.org/10.1175/MWR-D-13-00179.1 CrossRefGoogle Scholar
  79. Zarzycki CM et al (2014b) Aquaplanet experiments using CAM’s variable-resolution dynamical core. J Clim 27:5481–5503.  https://doi.org/10.1175/JCLI-D-14-00004.1 CrossRefGoogle Scholar
  80. Zhao M, Held IM, Lin SJ, Vecchi GA (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J Clim 22:6653–6678CrossRefGoogle Scholar
  81. Zhao M, Held IM, Vecchi GA, Scoccimarro E, Wang H, Wehner M, Lim Y-K, LaRow T, Camargo SJ, Walsh K, Gualdi S, Kumar A, Schubert S, Reed KA (2013) Robust direct effect of increasing atmospheric CO2 concentration on global tropical cyclone frequency – a multi-model inter-comparison. US CLIVAR Var Fall 2013 11(3):17–23Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michael F. Wehner
    • 1
    Email author
  • Colin Zarzycki
    • 2
  • Christina Patricola
    • 1
  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations