Skip to main content

Local Search

  • Chapter
  • First Online:
The GLOBAL Optimization Algorithm

Part of the book series: SpringerBriefs in Optimization ((BRIEFSOPTI))

  • 636 Accesses

Abstract

Local search is a crucial part of the GLOBAL algorithm; hence the performance of it depends much on the attached local search method. During the past research, many local search methods were tested as part of GLOBAL. In this study, an enhanced variant of the UNIRANDI local search algorithm is presented. The performance of the new method is tested empirically on standard test functions in terms of function evaluations, success rates, error values, and CPU time. The new UNIRANDI is compared to well-known derivative-free local search methods including state-of-the-art methods too. A performance profile is also used to assess the examined methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.sigevo.org/gecco-2009/workshops.html#bbob.

  2. 2.

    http://coco.gforge.inria.fr.

References

  1. Boender, C.G.E., Rinnooy Kan, A.H.G., Timmer, G., Stougie, L.: A stochastic method for global optimization. Math. Program. 22, 125–140 (1982)

    Article  MathSciNet  Google Scholar 

  2. Csendes, T.: Nonlinear parameter estimation by global optimization-efficiency and reliability. Acta Cybernet. 8, 361–370 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Csendes, T., Pál, L., Sendin, J.O.H., Banga, J.R.: The GLOBAL optimization method revisited. Optim. Lett. 2, 445–454 (2008)

    Article  MathSciNet  Google Scholar 

  4. Currie, J., Wilson, D.I.: OPTI: Lowering the barrier between open source optimizers and the industrial MATLAB user. In: Sahinidis, N., Pinto, J. (eds.) Foundations of Computer-Aided Process Operations. Savannah, Georgia (2012)

    Google Scholar 

  5. Custódio, A.L., Rocha, H., Vicente, L.N.: Incorporating minimum Frobenius norm models in direct search. Comput. Optim. Appl. 46, 265–278 (2010)

    Article  MathSciNet  Google Scholar 

  6. Davidon, W.: Variable metric method for minimization. Technical Report ANL5990 (revised), Argonne National Laboratory, Argonne, Il (1959)

    Google Scholar 

  7. Dolan, E., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  8. Grippo, L., Rinaldi, F.: A class of derivative-free nonmonotone optimization algorithms employing coordinate rotations and gradient approximations. Comput. Optim. Appl. 60(1), 1–33 (2015)

    Article  MathSciNet  Google Scholar 

  9. Grishagin, V.A.: Operational characteristics of some global search algorithms. Prob. Stoch. Search 7, 198–206 (1978)

    MATH  Google Scholar 

  10. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization benchmarking 2010: Experimental setup. Technical Report RR-7215, INRIA (2010)

    Google Scholar 

  11. Hansen, N., Auger, A., Ros, R., Finck, S., Posik, P.: Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009. In: GECCO’10: Proc. 12th Ann. Conf. on Genetic and Evolutionary Computation, pp. 1689–1696. ACM, New York (2010)

    Google Scholar 

  12. Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. J. ACM 8, 212–226 (1961)

    Article  Google Scholar 

  13. Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search. J. Glob. Optim. 14, 331–355 (1999)

    Article  MathSciNet  Google Scholar 

  14. Järvi, T.: A random search optimizer with an application to a max-min problem. Publications of the Institute for Applied Mathematics (3). University of Turku, Finland (1973)

    Google Scholar 

  15. Johnson, S.: The NLopt nonlinear-optimization package. http://ab-initio.mit.edu/nlopt. Last accessed July 2015

  16. Kelley, C.T.: Detection and remediation of stagnation in the Nelder-Mead algorithm using a sufficient decrease condition. Siam J. Optim. 10, 43–55 (1997)

    Article  MathSciNet  Google Scholar 

  17. Kelley, C.T.: Iterative Methods for Optimization. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  18. Montes de Oca, M.A., Aydin, D., Stützle, T.: An incremental particle swarm for large-scale continuous optimization problems: an example of tuning-in-the-loop (re)design of optimization algorithms. Soft Comput. 15(11), 2233–2255 (2011)

    Google Scholar 

  19. Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J Optim. 20, 172–191 (2009)

    Article  MathSciNet  Google Scholar 

  20. Nelder, J., Mead, R.: The downhill simplex method. Comput. J. 7, 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  21. Pál, L.: Empirical study of the improved UNIRANDI local search method. Cen. Eur. J. Oper. Res. 25(2017), 929–952 (2017). https://doi.org/10.1007/s10100-017-0470-2

    Article  MathSciNet  Google Scholar 

  22. Pál, L., Csendes, T.: An improved stochastic local search method in a multistart framework. In: Proceedings of the 10th Jubilee IEEE International Symposium on Applied Computational Intelligence and Informatics, Timisoara, pp. 117–120 (2015)

    Google Scholar 

  23. Pál, L., Csendes, T., Markót, M.Cs., Neumaier, A.: Black-box optimization benchmarking of the GLOBAL method. Evol. Comput. 20, 609–639 (2012)

    Google Scholar 

  24. Pošík, P., Huyer, W.: Restarted Local Search Algorithms for Continuous Black Box Optimization. Evol. Comput. 20(4), 575–607 (2012)

    Article  Google Scholar 

  25. Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7(2), 155–162 (1964)

    Article  MathSciNet  Google Scholar 

  26. Powell, M.J.D.: The NEWUOA software for unconstrained optimization without derivatives. In: Di Pillo, G., Roma, M. (eds.) Large Scale Nonlinear Optimization, pp. 255–297. Springer, Berlin (2006)

    Chapter  Google Scholar 

  27. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. The Art of Scientific Computing, 2nd edn. Cambridge University Press, New York (1992)

    Google Scholar 

  28. Rios, L.M., Sahinidis, N.V.: Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Optim. 56, 1247–1293 (2013)

    Google Scholar 

  29. Rosenbrock, H.H.: An Automatic Method for Finding the Greatest or Least Value of a Function. Comput. J. 3, 175–184 (1960)

    Article  MathSciNet  Google Scholar 

  30. Törn, A.A.: A search clustering approach to global optimization. In: Dixon, L., Szegő, G. (eds.) Towards Global Optimization, vol. 2, pp. 49–62. North-Holland, Amsterdam (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bánhelyi, B., Csendes, T., Lévai, B., Pál, L., Zombori, D. (2018). Local Search. In: The GLOBAL Optimization Algorithm . SpringerBriefs in Optimization. Springer, Cham. https://doi.org/10.1007/978-3-030-02375-1_2

Download citation

Publish with us

Policies and ethics