Skip to main content

Intercalation of the Kaolin Minerals with Simple Molecules

  • Chapter
  • First Online:
Spectroscopic Methods in the Study of Kaolin Minerals and Their Modifications

Part of the book series: Springer Mineralogy ((MINERAL))

Abstract

In this chapter, the intercalation of a number of organic molecules in the kaolin group 1:1 clay minerals that are generally anticipated not to swell, will be described together with the effects of these molecules on the clay internal and external surfaces The reactive molecules are inserted between the successive clay layers, thereby breaking the hydrogen bond s between the hydroxyl groups of the octahedral sheet on one side and the oxygen atoms of the tetrahedral siloxane sheet on the other side. Van der Waals type forces and dipole-dipole interactions also contribute to interlayer bonding. In order for organic molecules to penetrate between the kaolinite layers, sufficient energy must be provided for these hydrogen bonding forces to be overcome. One way of understanding the intercalation process is to think of the kaolin layers as being solvated by the organic molecules. Infrared spectroscopy has regularly been used to demonstrate this solvation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JM (1979) The crystal stucture of a dickite: N-methylformamide intercalate. Acta Crystall B 35:1084–1087

    Article  Google Scholar 

  • Adams JM, Jefferson DA (1976) The crystal structure of a dickite: formamide intercalate Al2Si2O5(OH)4 . HCONH2. Acta Crystall B 32:1180–1183

    Article  Google Scholar 

  • Anton O, Rouxhet PG (1977) Note on the intercalation of kaolinite, dickite and halloysite by dimethyl-sulfoxide. Clay Clay Miner 25:259–263

    Article  Google Scholar 

  • Barrios J, Plançon A, Cruz MI, Tchoubar C (1977) Qualitative and quantitative study of stacking faults in a hydrazine treated kaolinite-relationship with infrared spectra. Clay Clay Miner 25:422–429

    Article  Google Scholar 

  • Barron PF, Frost RL, Skjemstad JO (1983) 29Si spin-lattice relaxation in aluminosilicates. J Chem Soc Chem Commun 581–583

    Google Scholar 

  • Ben Haj Amara A, Ben Rhaiem H, Plancon A (2000) Evolution structurale de la nacrite en fonction de la nature des molécules organiques intercalees. J Appl Crystallogr 33:1351–1359

    Article  Google Scholar 

  • Bertoluzza A, Bonora S, Fini G, Battaglia MA, Monti P (1981) Hydrogen bonding in dimethylsulphoxide-proton donor interactions: a Raman and infrared study of the DMSO-HCI system. J Raman Spectrosc 11:430–436

    Article  Google Scholar 

  • Bickley RI, Edwards HGM, Rose SJ, Gustar R (1990) A raman spectroscopic study of nickel(II) acetate, Ni(CH3COO)2 and its aqueous and methanolic solutions. J Mol Struct 238:15–26

    Article  Google Scholar 

  • Brigatti MF, Galan E, Theng BKG (2013) Structure and mineralogy of clay minerals. In: Bergaya F, Lagaly G (eds) Handbook of clay science, Developments in Clay Science, vol 5. Elsevier, Amsterdam, pp 21–81

    Chapter  Google Scholar 

  • Bukowska J (1979) On the assignment of the NH2 stretching modes in the vibrational spectrum of formamide. Spectrochim Acta A 35:985–988

    Article  Google Scholar 

  • Campos RB, Wypych F, Filho HPM (2011) Theoretical estimates of the IR spectrum of formamide intercalated into kaolinite. Int J Quant Chem 111:2137–2148

    Article  Google Scholar 

  • Capitaneo JL, Caffarena VR, Teixeira da Silva F, Pinho MS, Pinheiro dos Santos MA (2009) Kaolinite-dimethylsulfoxide nanocomposite precursors. Ceram Eng Sci Proc 29:181–196

    Google Scholar 

  • Cheng H, Liu Q, Liu J, Sun B, Kang Y, Frost RL (2014) TG–MS–FTIR (evolved gas analysis) of kaolinite–urea intercalation complex. J Therm Anal Calorim 116:195–203

    Article  Google Scholar 

  • Churchman GJ, Carr RM (1973) Dehydration of the washed potassium acetate complex of halloysite. Clay Clay Miner 21:423–424

    Article  Google Scholar 

  • Churchman GJ, Whitton JS, Claridge GGC, Theng BKG (1984) Intercalation method using formamide for differentiating halloysite from kaolinite. Clay Clay Miner 32:241–248

    Article  Google Scholar 

  • Cruz MDR, Duro FIF (1999) New data on the kaolinite-potassium acetate complex. Clay Miner 34:565–577

    Article  Google Scholar 

  • Cruz M, Laycock A, White JL (1969) Perturbation of OH groups in intercalated donor–acceptor complexes I. Formamide, methyl formamide, and dimethyl formamide kaolinite complexes. Paper presented at the Proc. Int. Clay Conf. 1969 Tokyo, Japan

    Google Scholar 

  • Dawley MM, Scott AM, Hill FC, Leszczynski J, Orlando TM (2012) Adsorption of formamide on kaolinite surfaces: a combined infrared experimental and theoretical study. J Phys Chem C 116:23981–23991

    Article  Google Scholar 

  • Deeds CT, van Olphen H, Bradley WF (1966) In Intercalation and interlayer hydration of minerals in rhe kaolinite group. Paper presented at the Proc. Int. Clay Conf., Jerusalem Jerusalem

    Google Scholar 

  • Deng Y, White GN, Dixon JB (2002) Effect of structural stress on the intercalation rate of kaolinite. J Colloid Interface Sci 250:379–393

    Article  Google Scholar 

  • Dudik JM, Johnson CR, Asher SA (1985) UV resonance Raman studies of acetone, acetamide, and N-methylacetamide: models for the peptide bond. J Phys Chem 89:3805–3814

    Article  Google Scholar 

  • Duer MJ, Rocha J (1992) A two-dimensional solid-state 2H exchange NMR study of the molecular motion in the kaolinite:DMSO intercalation compound. J Magn Reson 98:524–533

    Google Scholar 

  • Duer MJ, Rocha J, Klinowski J (1992) Solid-state NMR studies of the molecular motion in the kaolinite: DMSO intercalate. J Am Chem Soc 114:6867–6874

    Article  Google Scholar 

  • Durig JR, Zheng C (2002) On the vibrational spectra and structural parameters of hydrazine and some methyl substituted hydrazines. Vib Spectrosc 30:59–67

    Article  Google Scholar 

  • Farmer VC (1974) The infrared spectra of minerals. Mineralogical Society, London

    Book  Google Scholar 

  • Fogarasi G, Balázs A (1985) A comparative ab initio study of amides. J Mol Struct Theochem 133:105–123

    Article  Google Scholar 

  • Franco F, Ruiz Cruz MD (2003) Thermal behaviour of dickite-dimethyl sulfoxide intercalation complex. J Therm Anal Calorim 73:151–165

    Article  Google Scholar 

  • Frost RL (1998) Hydroxyl deformation in kaolins. Clay Clay Miner 46:280–289

    Article  Google Scholar 

  • Frost RL, Johansson U (1998) Combination bands in the infrared spectroscopy of kaolins: a DRIFT spectroscopic study. Clay Clay Miner 46:466–477

    Article  Google Scholar 

  • Frost RL, Kloprogge JT (2000) Raman spectroscopy of the acetates of sodium, potassium and magnesium at liquid nitrogen temperature. J Mol Struct 526:131–141

    Article  Google Scholar 

  • Frost RL, Kloprogge JT (2012) Raman and infrared spectroscopic study of the modification of kaolinite surfaces by intercalation with organic molecules. Encycl Surf Colloid Sci (2nd ed) pp 5361–5372

    Google Scholar 

  • Frost RL, Kristof J (1997) Intercalation of halloysite: a Raman spectroscopic study. Clay Clay Miner 45:551–563

    Article  Google Scholar 

  • Frost RL, Tran TH, Kristof J (1997a) The structure of an intercalated ordered kaolinite – a Raman microscopy study. Clay Miner 32:587–596

    Article  Google Scholar 

  • Frost RL, Tran THT, Kristóf J (1997b) FT-Raman spectroscopy of the lattice region of kaolinite and its intercalates. Vib Spectrosc 13:175–186

    Article  Google Scholar 

  • Frost RL, Forsling W, Holmgren A, Kloprogge JT, Kristóf J (1998a) Raman spectroscopy at temperatures between 298 and 423 K and at 77 K of kaolinites intercalated with formamide. J Raman Spectrosc 29:1065–1069

    Article  Google Scholar 

  • Frost RL, Kloprogge JT, Tran THT, Kristóf J (1998b) The effect of pressure on the intercalation of an ordered kaolinite. Am Mineral 83:1182–1187

    Article  Google Scholar 

  • Frost RL, Kristóf J, Paroz GN, Kloprogge JT (1998c) Modification of the kaolinite hydroxyl surfaces through intercalation with potassium acetate under pressure. J Colloid Interface Sci 208:478–486

    Article  Google Scholar 

  • Frost RL, Kristóf J, Paroz GN, Kloprogge JT (1998d) Molecular structure of dimethyl sulfoxide intercalated kaolinites. J Phys Chem B 102:8519–8532

    Article  Google Scholar 

  • Frost RL, Kristóf J, Paroz GN, Kloprogge JT (1998e) Role of water in the intercalation of kaolinite with hydrazine. J Colloid Interface Sci 208:216–225

    Article  Google Scholar 

  • Frost RL, Kloprogge JT, Kristóf J, Horváth E (1999a) Deintercalation of hydrazine-intercalated low-defect kaolinite. Clay Clay Miner 47:732–741

    Article  Google Scholar 

  • Frost RL, Kristóf J, Horváth E, Kloprogge JT (1999b) Deintercalation of dimethylsulfoxide intercalated kaolinites – a DTA/TGA and Raman spectroscopic study. Thermochim Acta 327:155–166

    Article  Google Scholar 

  • Frost RL, Kristóf J, Horváth E, Kloprogge JT (1999c) Modification of kaolinite surfaces through intercalation with potassium acetate, II. J Colloid Interface Sci 214:109–117

    Article  Google Scholar 

  • Frost RL, Kristóf J, Horváth E, Kloprogge JT (1999d) Modification of kaolinite surfaces with cesium acetate at 25, 120 and 220°C. Langmuir 15:8787–8794

    Article  Google Scholar 

  • Frost RL, Kristóf J, Horváth E, Kloprogge JT (1999e) Molecular structure of dimethy sulfoxide in DMSO-intercalated kaolinites at 298 and 77 K. J Phys Chem A 103:9654–9660

    Article  Google Scholar 

  • Frost RL, Kristóf J, Paroz GN, Kloprogge JT (1999f) Intercalation of kaolinite with acetamide. Phys Chem Miner 26:257–263

    Article  Google Scholar 

  • Frost RL, Lack DA, Paroz GN, Tran THT (1999g) New techniques for studying the intercalation of kaolinites from Georgia with formamide. Clay Clay Miner 47:297–303

    Article  Google Scholar 

  • Frost RL, Kristóf J, Horváth E, Kloprogge JT (2000a) Effect of water on the formamide-intercalation of kaolinite. Spectrochim Acta A 56:1711–1729

    Article  Google Scholar 

  • Frost RL, Kristóf J, Horváth E, Kloprogge JT (2000b) Kaolinite hydroxyls in dimethysulphoxide-intercalated kaolinites at 77 K – a Raman spectroscopic study. Clay Miner 35:443–454

    Article  Google Scholar 

  • Frost RL, Kristóf J, Horváth E, Kloprogge JT (2000c) Vibrational spectroscopy of formamide-intercalated kaolinites. Spectrochim Acta A 56:1191–1204

    Article  Google Scholar 

  • Frost RL, Kristóf J, Makó É, Kloprogge JT (2000d) Modification of the hydroxyl surface in potassium-acetate-intercalated kaolinite between 25 and 300°C. Langmuir 16:7421–7428

    Article  Google Scholar 

  • Frost RL, Kristóf J, Rintoul L, Kloprogge JT (2000e) Raman spectroscopy of urea and urea-intercalated kaolinites at 77 K. Spectrochim Acta A 56:1681–1691

    Article  Google Scholar 

  • Frost RL, Kristóf J, Horváth E, Kloprogge JT (2001a) The modification of hydroxyl surfaces of formamide-intercalated kaolinites synthesized by controlled rate thermal analysis. J Colloid Interface Sci 239:126–133

    Article  Google Scholar 

  • Frost RL, Kristóf J, Horváth E, Kloprogge JT (2001b) Raman microscopy of formamide-intercalated kaolinites treated by controlled-rate thermal analysis technology. J Raman Spectrosc 32:873–880

    Article  Google Scholar 

  • Frost RL, Kristóf J, Horváth E, Kloprogge JT (2001c) Raman spectroscopy of potassium acetate-intercalated kaolinites over the temperature range 25–300°C. J Raman Spectrosc 32:271–277

    Article  Google Scholar 

  • Frost RL, Kristóf J, Horváth E, Kloprogge JT (2001d) Separation of adsorbed formamide and intercalated formamide using controlled rate thermal analysis methodology. Langmuir 17:3216–3222

    Article  Google Scholar 

  • Frost RL, Kristóf J, Kloprogge JT, Horváth E (2001e) Modification of the hydroxyl surface in cesium acetate intercalated kaolinite. Langmuir 17:4067–4073

    Article  Google Scholar 

  • Frost RL, Kristóf J, Schmidt JM, Kloprogge JT (2001f) Raman spectroscopy of potassium acetate-intercalated kaolinites at liquid nitrogen temperature. Spectrochim Acta A 57:603–609

    Article  Google Scholar 

  • Frost RL, Locos OB, Kristóf J, Kloprogge JT (2001g) Infrared spectroscopic study of potassium and cesium acetate-intercalated kaolinites. Vib Spectrosc 26:33–42

    Article  Google Scholar 

  • Frost RL, Kristóf J, Horváth E, Martens WN, Kloprogge JT (2002a) Complexity of intercalation of hydrazine into kaolinite-A controlled rate thermal analysis and DRIFT spectroscopic study. J Colloid Interface Sci 251:350–359

    Article  Google Scholar 

  • Frost RL, Kristóf J, Horváth E, Martens WN, Kloprogge JT (2002b) Complexity of intercalation of hydrazine into kaolinite – controlled rate thermal analysis and DRIFT spectroscopic study. J Colloid Interface Sci 251:350–359

    Article  Google Scholar 

  • Frost RL, Kristóf J, Kloprogge JT, Horváth E (2002c) Deintercalation of hydrazine-intercalated kaolinite in dry and moist air. J Colloid Interface Sci 246:164–174

    Article  Google Scholar 

  • Frost RL, Kristóf J, Makó É, Horváth E (2003) A DRIFT spectroscopic study of potassium acetate intercalated mechanochemically activated kaolinite. Spectrochim Acta A 59A:1183–1194

    Article  Google Scholar 

  • Fukamachi B, Regina C, Wypych F, Mangrich AS (2007a) Use of Fe3+ ion probe to study the stability of urea-intercalated kaolinite by electron paramagnetic resonance. J Colloid Interface Sci 313:537–541

    Article  Google Scholar 

  • Fukamachi CRB, Wypych F, A.S. M (2007b) Fe3+ ion probe to study the stability of urea-intercalated kaolinite by electron paramagnetic resonance. J Colloid Interface Sci 313:537–541

    Article  Google Scholar 

  • Ganeshsrinivas E, Sathyanarayana DN, Machida K, Miwa Y (1996) Simulation of the infrared spectra of acetamide by an extended molecular mechanics method. J Mol Struct (THEOCHEM) 361:217–227

    Article  Google Scholar 

  • Giese RF, van Oss CJ (1993) The surface thermodynamic properties of silicates and their interactions with biological materials. In: Guthrie CD, Mossman BT (eds) Health effects of mineral dusts, Reviews in Mineralogy, vol 28. Mineralogical Society of America, Washington, DC, pp 327–346

    Chapter  Google Scholar 

  • Hayashi S (1995) NMR study of dynamics of dimethyl sulfoxide molecules in kaolinite/dimethyl sulfoxide intercalation compound. J Phys Chem 99:7120–7129

    Article  Google Scholar 

  • Hayashi S, Akiba E (1994) Interatomic distances in layered silicates and their intercalation compounds as studied by cross polarization NMR. Chem Phys Lett 226:495–500

    Article  Google Scholar 

  • Horváth E, Kristóf J, Frost RL, Jakab E, Makó É, Vagvoelgyi V (2005) Identification of superactive centers in thermally treated formamide-intercalated kaolinite. J Colloid Interface Sci 289:132–138

    Article  Google Scholar 

  • Itoh K, Shimanouchi T (1972) Vibrational spectra of crystalline formamide. J Mol Spectrosc 42:86–99

    Article  Google Scholar 

  • Johnston CT (1989) Raman and FT-IR spectra of the kaolinite-hydrazine intercalate. ACS Symp Ser 415:432–454

    Article  Google Scholar 

  • Johnston CT, Stone DA (1990) Influence of hydrazine on the vibrational modes of kaolinite. Clay Clay Miner 38:121–128

    Article  Google Scholar 

  • Johnston CT, Sposito G, Bocian DF, Birge RR (1984) Vibrational spectroscopic study of the interlamellar kaolinite-dimethyl sulfoxide complex. J Phys Chem 88:5959–5964

    Google Scholar 

  • Johnston CT, Bish DL, Eckert J, Brown LA (2000) Infrared and inelastic neutron scattering study of the 1.03- and 0.95-nm kaolinite-hydrazine intercalation complexes. J Phys Chem B 104:8080–8088

    Article  Google Scholar 

  • Johnston CT, Kogel JE, Bish DL, Koguri T, Murray HH (2008) Low-temperature FTIR study of kaolin-group minerals. Clay Clay Miner 56:470–485

    Article  Google Scholar 

  • Kanesaka I, Mitsuhashi E (2008) A damped oscillator model for infrared spectra of formamide in the liquid state. Bull Chem Soc Jpn 81:248–253

    Article  Google Scholar 

  • Keuleers R, Desseyn HO, Rousseau B, Van Alsenoy C (1999) Vibrational analysis of urea. J Phys Chem A 103:4621–4630

    Article  Google Scholar 

  • Kloprogge JT, Frost RL (1999) Raman and infrared spectroscopic study of the intercalation of kaolin with organic molecules. Part 1. Group A and B molecules. Tijdschr Klei, Glas Keram 20:20–24

    Google Scholar 

  • Kloprogge JT, Frost RL, Kristóf J (1999) Complex expansion of kaolinite with hydrazine; some preliminar observations. Neues Jahrb Miner, Mh 1999:49–61

    Google Scholar 

  • Kristóf J, Frost RL, Felinger A, Mink J (1997) FTIR spectroscopic study of intercalated kaolinite. J Mol Struct 410–411:119–122

    Google Scholar 

  • Kristof J, Frost RL, Kloprogge JT, Horvath E, Gabor M (1999) Thermal behaviour of kaolinite intercalated with formamide. dimethyl sulphox ide and hydrazine. J Therm Anal 56:885–891

    Article  Google Scholar 

  • Lagaly G (1984) Clay organic reactions. Philos Trans R Soc Lond Ser A 311:315–332

    Article  Google Scholar 

  • Lapides I, Yariv S, Lahav N (1995) The intercalation of CsF in kaolinite. Clay Miner 30:287–294

    Article  Google Scholar 

  • Ledoux RL, White JL (1964a) Infrared studies of the hydroxyl groups in intercalated kaolinite complexes. In: Bradley WF, Bailey SW (eds) Proc. 13th Conf. Clays and Clay Minerals, Madison, Wisconsin. Pergamon Press, New York, pp 289–315

    Google Scholar 

  • Ledoux RL, White JL (1964b) Infrared study of the OH group in expanded kaolinite. Science 143:244–246

    Article  Google Scholar 

  • Ledoux RL, White JL (1966) Infrared studies of hydrogen bonding interaction between kaolinite surfaces and intercalated potassium acetate, hydrazine, formamide and urea. J Colloid Interface Sci 21:127–152

    Article  Google Scholar 

  • Lipsicas M, Raythatha R, Giese RF Jr, Costanzo PM (1986) Molecular motions, surface interactions, and stacking disorder in kaolinite intercalates. Clay Clay Miner 34:635–644

    Article  Google Scholar 

  • Liu Q, Zhang S, Cheng H, Wang D, Li X, Hou X, Frost RL (2014) Thermal behavior of kaolinite-urea intercalation complex and molecular dynamics simulation for urea molecule orientation. J Therm Anal Calorim 117:189–196

    Article  Google Scholar 

  • Lombardi Katia C, Mangrich Antonio S, Wypych F, Rodrigues-Filho Ubirajara P, Guimaraes Jose L, Schreiner Wido H (2006) Sequestered carbon on clay mineral probed by electron paramagnetic resonance and X-ray photoelectron spectroscopy. J Colloid Interface Sci 295:135–140

    Article  Google Scholar 

  • Lombardi KC, Guimaraes JL, Mangrich AS, Mattoso N, Abbate M, Schreiner WH, Wypych F (2002) Structural and morphological characterization of the PP-0559 kaolinite from the Brazilian Amazon region. J Braz Chem Soc 13:270–275

    Article  Google Scholar 

  • Makó É, Kristóf J, Horváth E, Vágvölgyi V (2009) Kaolinite–urea complexes obtained by mechanochemical and aqueous suspension techniques – a comparative study. J Colloid Interface Sci 330:367–373

    Article  Google Scholar 

  • Mardyukov A, Sánchez-Garcia E, Rodziewicz P, Doltsinis NL, Sander W (2007) Formamide dimers: a computational and matrix isolation study. J Phys Chem A 111:10552–10561

    Article  Google Scholar 

  • Martens WN, Ding Z, Frost RL, Kristóf J, Kloprogge JT (2002a) Raman spectroscopy of hydrazine-intercalated kaolinite at 77, 298, 323, 343 and 358 K. J Raman Spectrosc 33:31–36

    Article  Google Scholar 

  • Martens WN, Frost RL, Kristóf J, Kloprogge JT (2002b) Raman spectroscopy of dimethyl sulphoxide and deuterated dimethyl sulphoxide at 298 and 77 K. J Raman Spectrosc: 33

    Google Scholar 

  • Mendelovici E, Sagarzazu A (1985) The use of RbCl disks for the infrared spectroscopy detection of hydrated and dehydrated halloysite in mixtures with kaolinite. Clay Miner 20:493–498

    Article  Google Scholar 

  • Michaelian KH, Friesen WI, Yariv S, Nasser A (1991a) Diffuse reflectance infrared spectra of kaolinite and kaolinite/alkali halide mixtures. Curve-fitting of the OH stretching regin. Can J Chem 69:1786–1790

    Article  Google Scholar 

  • Michaelian KH, Yariv S, Nasser A (1991b) Study of the interactions between caesium bromide and kaolinite by photoacoustic and diffuse reflectance infrared spectroscopy. Can J Chem 69:749–754

    Article  Google Scholar 

  • Michaelian KH, Lapides I, Lahav N, Yariv S, Brodsky I (1998) Infrared study of the intercalation of kaolinite by cesium bromide and cesium iodide. J Colloid Interface Sci 204:389–393

    Article  Google Scholar 

  • Miller JG, Oulton JD (1970) Prototropy in kaolinite during percussive grinding. Clay Clay Miner 18:313–323

    Article  Google Scholar 

  • Mortensen A, Nielsen OF, Yarwood J, Shelley V (1994) Vibrational spectra of mixtures of Isotopomers of Formamide. Anomalies in the carbonyl stretching region. J Phys Chem 98:5221–5226

    Google Scholar 

  • Mortensen A, Nielsen OF, Yarwood J, Shelley V (1995a) Anomalies in the isotropic raman spectra of liquid mixtures of isotopomers of formamide. intermolecular interactions in the carbonyl stretching region. J Phys Chem 99:4435–4440

    Article  Google Scholar 

  • Mortensen A, Nielsen OF, Yarwood J, Shelley V (1995b) Interactions in liquid mixtures of formamide isotopomers studied by Raman spectroscopy. J Raman Spectrosc 26:669–674

    Article  Google Scholar 

  • Nicolini KP, Fukamachi CRB, Wypych F, Mangrich AS (2009) Dehydrated halloysite intercalated mechanochemically with urea: thermal behavior and structural aspects. J Colloid Interface Sci 338:474–479

    Article  Google Scholar 

  • Niu M-N, Guo C-X (2006) Preparation of delaminated nano-kaolinite by intercalation of chemical assistants. Adv Mater Res 11–12:441–444

    Article  Google Scholar 

  • Olejnik S, Aylmore LAG, Posner AM, Quirk JP (1968) Infrared spectra of kaolin mineral-dimethyl sulfoxide complexes. J Phys Chem 72:241–249

    Article  Google Scholar 

  • Olejnik S, Posner AM, Quirk JP (1971) Infrared spectra of interlamellar kaolinite-amide complexes. II. Acetamide, N-methylacetamide, and dimethylacetamide. J Colloid Interface Sci 37:536–547

    Article  Google Scholar 

  • Pines A, Gibby MG, Waugh JS (1972) Proton-enhanced nuclear induction spectroscopy 13C chemical shielding anisotropy in some organic solids. Chem Phys Lett 15:373–376

    Article  Google Scholar 

  • Raghuvanshi GS, Pal M, Patel MB, Bist HD (1983) Vibrational spectra and phase transitions in Ni(CH3COO)2.4X2O (X = H, D). J Mol Struct 101:7–21

    Article  Google Scholar 

  • Raghuvanshi GS, Khandelwal DP, Bist HD (1985) Fermi resonance in M(CH3COO)2.4H2O (M Mg, Co and Ni). Spectrochim Acta A 41:391–398

    Article  Google Scholar 

  • Raupach M, Barron PF, Thompson JG (1987) Nuclear magnetic resonance, infrared, and x-ray powder diffraction study of dimethylsulfoxide and dimethylselenoxide intercalates with kaolinite. Clay Clay Miner 35:208–219

    Article  Google Scholar 

  • Sawhney BL (1972) Selective sorption and fixation of cations by clay minerals: a review. Clay Clay Miner 20:93–100

    Article  Google Scholar 

  • Schaber PM, Colson J, Higgins S, Thielen D, Anspach B, Brauer J (2004) Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim Acta 424:131–142

    Article  Google Scholar 

  • Schirmann J-P, Bourdauducq P (2000) Hydrazine. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/14356007.a13_177

  • Schrader ME, Yariv S (1990) Wettability of clay minerals. J Colloid Interface Sci 136:85–94

    Article  Google Scholar 

  • Sivapullaiah PV, Sitharam TG, Rao KSS (1994) Dimethyl sulfoxide and dimethyl formamide complexes of kaolinite and montmorillonite clays. Clay Res 13:16–23

    Google Scholar 

  • Sivaraman B, Raja Sekhar BN, Nair BG, Hatode V, Mason NJ (2013) Infrared spectrum of formamide in the solid phase. Spectrochim Acta A 105:238–244

    Article  Google Scholar 

  • Suitch PR, Young RA (1983) Atom positions in well-ordered kaolinite. Clay Clay Miner 31:357–366

    Article  Google Scholar 

  • Thompson JG (1984) Two possible interpretations of 29Si nuclear magnetic resonance spectra of kaolin-group minerals. Clay Clay Miner 32:233–234

    Article  Google Scholar 

  • Thompson JG (1985) Interpretation of solid state 13C and 29Si nuclear magnetic resonance spectra of kaolinite intercalates. Clay Clay Miner 33:173–180

    Article  Google Scholar 

  • Thompson JG, Cuff C (1985) Crystal structure kaolinite:dimethyl sulfoxide intercalate. Clay Clay Miner 33:490–500

    Article  Google Scholar 

  • Torchia DA (1978) The measurement of proton-enhanced carbon-13 T1 values by a method which suppresses artifacts. J Magn Reson 30:613–616

    Google Scholar 

  • Torii H, Tasumi M (1998) Liquid structure, infrared and isotropic/anisotropic raman noncoincidence of the amide I band, and low-wavenumber vibrational spectra of liquid formamide: molecular dynamics and ab initio molecular orbital studies. J Phys Chem B 102:315–321

    Article  Google Scholar 

  • Torrie BH, Brown BA (1994) Raman and far-infrared spectra of formamide at temperatures down to 20 K. J Raman Spectrosc 25:183–187

    Article  Google Scholar 

  • Tunega D, Benco L, Haberhauer G, Gerzabek MH, Lischka H (2002) Ab initio molecular dynamics study of adsorption sites on the (0 0 1) surfaces of 1:1 dioctahedral clay minerals. J Phys Chem B 106:11515–11525

    Article  Google Scholar 

  • Vágvölgyi V, Kovács J, Horváth E, Kristóf J, Makó E (2008) Investigation of mechanochemically modified kaolinite surfaces by thermoanalytical and spectroscopic methods. J Colloid Interface Sci 317:523–529

    Article  Google Scholar 

  • Wada K (1961) Lattice expansion of kaolinite minerals by treatment with potassium acetate. Am Miner 46:78–91

    Google Scholar 

  • Wada K (1965) Intercalation of water in kaolin minerals. Am Miner 50:924–941

    Google Scholar 

  • Wang L, Wu D, Yuan P, Chen Z, Chen Z (2002) 1H MAS NMR spectra of kaolinite/formamide intercalation compound. Chin Sci Bull 47:504–508

    Article  Google Scholar 

  • Wang L, Xie X, Wu D (2007) The spectroscopy characterization of kaolinite-organic intercalation materials. Key Eng Mater 353–358:1362–1365

    Article  Google Scholar 

  • Weiss A, Orth H (1973) Zur Kenntnis der Intercalationsverbindungen von Kaolinit, Nakrit, Dickit and Halloysit mit Pyridin-N-oxid and Picolin-N-oxid. Z Naturforsch 28b:252–254

    Article  Google Scholar 

  • Weiss A, Thielepape W, Orth H (1966) Intercalation into kaolinite minerals. Paper presented at the Proceedings of the International Clay Conference, Jerusalem, Israel, June 20–24, 1966

    Google Scholar 

  • Weiss A, Ruthard R, Orth H (1973) Neue Einlagerungsverbindungen von Kaolinit, Nakrit, Dickit, Halloysit und Titandisulfid mit Imidazol und Methylimidazol. Z Naturforsch 28b:446–449

    Article  Google Scholar 

  • Yariv S (1975a) Infrared study of grinding kaolinite with alkali metal chlorites. Powder Technol 12:131–138

    Article  Google Scholar 

  • Yariv S (1975b) Infrared study of the interaction between cesium chloride and kaolinite. J Chem Soc Faraday Trans 1(71):674–684

    Article  Google Scholar 

  • Yariv S (1986) Interactions of minerals of the kaolin group with cesium chloride and deuteration of the complexes. Int J Trop Agric 4:310–322

    Google Scholar 

  • Yariv S (1992) Wettability of clay minerals. In: Schrader ME, Loeb G (eds) Modern approaches to wettability: theory and applications. Plenum Press, New York, pp 279–326

    Chapter  Google Scholar 

  • Yariv S, Lapides I (2000) The effect of mechanochemical treatments on clay minerals and the mechanochemical adsorption of organic materials onto clay minerals. J Mater Synth Process 8:223–233

    Article  Google Scholar 

  • Yariv S, Lapides I (2008) Thermo-infrared-spectroscopy analysis of dimethylsulfoxide-kaolinite intercalation complexes. J Therm Anal Calorim 94:433–440

    Article  Google Scholar 

  • Yariv S, Shoval S (1976) Interaction between alkali-halides and halloysite: IR study of the interaction between alkali-halides and hydrated halloysite. Clay Clay Miner 24:253–261

    Article  Google Scholar 

  • Yariv S, Nasser A, Michaelian KH, Lapides I, Deutsch Y, Lahav N (1994) Thermal treatment of the kaolinite/CsCl/H2O intercalation complex. Thermochim Acta 234:275–285

    Article  Google Scholar 

  • Yariv S, Lapides I, Nasser A, Lahav N, Brodsky I, Michaelian KH (2000) Infrared study of the intercalation of potassium halides in kaolinite. Clay Clay Miner 48:10–18

    Article  Google Scholar 

  • Zamama M, Burneau A, Mokhlisse R (1995) IR study of deuterated dickite-DMSO intercalate: (Al2Si2O5(OH)4-CH3SOCH3). Effect of particle size on hydroxyl stretching frequencies. Spectrochim Acta A 51A:101–108

    Article  Google Scholar 

  • Zhang Y, Liu Q, Wu Z, Zheng Q, Cheng H (2012) Thermal behavior analysis of kaolinite-dimethylsulfoxide intercalation complex. J Therm Anal Calorim 110:1167–1172

    Article  Google Scholar 

  • Zhou J, Zheng W, Xu J, Chen L, Zhang Z, Li Y, Ma N, Du P (2013) Formation of 0.84 nm hydrated kaolinite as an environmentally friendly precursor of a kaolinite intercalation compound. Clay Clay Miner 61:416–423

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kloprogge, J.(. (2019). Intercalation of the Kaolin Minerals with Simple Molecules. In: Spectroscopic Methods in the Study of Kaolin Minerals and Their Modifications. Springer Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-030-02373-7_6

Download citation

Publish with us

Policies and ethics