Potential for CRISPR Genetic Engineering to Increase Xenobiotic Degradation Capacities in Model Fungi

Part of the Nanotechnology in the Life Sciences book series (NALIS)


Xenobiotic compounds are produced in high amounts by many different sources and can be degraded by different microbial species in different environments. However, they often accumulate, thus producing toxic effects in living organisms. Fungi represent the most abundant biomass in soils. Unique features of fungi include the capability to disperse hyphae through soil to support the growth of other microorganisms, a resistance to high concentrations of pollutants, and the capacity to remove pollutants by physical adsorption and/or intra- and extracellular enzymatic mechanisms. These characteristics serve to make fungi promising microorganisms for in situ and ex situ bioremediation of xenobiotic compounds. The latest advances in genetic engineering by the use of CRISPR/Cas9 technology based on the expression of Cas9 endonuclease and the design of guide RNA molecules allow the editing of specific regions of the receptor genome. In the context of bioremediation, by applying novel genetic engineering techniques, CRISPR/Cas9 could represent a powerful tool for the modification and advancement of xenobiotic metabolism in fungi. This opens a hitherto largely unexploited technology for biological treatment of xenobiotic compounds.


CRIPR-Cas9 Gene editing Xenobiotic compounds Filamentous fungi P450 



HPS acknowledges the Fulbright Program (PS00247479) for the Open Study/Research Grant. RNP was funded by Ramón y Cajal program (RYC-2011-08653). EA gratefully thanks the Ministry of Economy and Competitiveness (MINECO) and FEDER funds for co-funding the Ramón y Cajal contract (RYC-2013-12481).


  1. Abdallah NA, Prakash CS, McHughen AG (2015) Genome editing for crop improvement: challenges and opportunities. GM Crops Food 6:183–205CrossRefPubMedGoogle Scholar
  2. Aguiar TQ, Dinis C, Domingues L (2014) Cre-loxP-based system for removal and reuse of selection markers in Ashbya gossypii targeted engineering. Fungal Genet Biol 68:1–8CrossRefPubMedGoogle Scholar
  3. Albertsen A, Ravnskov S, Green H, Jensen DF, Larsen J (2006) Interactions between the external mycelium of the mycorrhizal fungus Glomus intraradices and other soil microorganisms as affected by organic matter. Soil Biol Biochem 38:1008–1014CrossRefGoogle Scholar
  4. Aranda E (2016) Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Curr Opin Biotechnol 38:1–8CrossRefPubMedGoogle Scholar
  5. Barcellos FG, Fungaro MH, Furlaneto MC, Lejeune B, Pizziranikleiner AA, de Azevedo JL (1998) Genetic analysis of Aspergillus nidulans unstable transformants obtained by the biolistic process. Can J Microbiol 44:1137–1141CrossRefPubMedGoogle Scholar
  6. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712CrossRefPubMedGoogle Scholar
  7. Basenko EY, Pulman JA, Shanmugasundram A, Harb OS, Crouch K, Starns D, Warrenfeltz S, Aurrecoechea C, Stoeckert CJ, Kissinger JC (2018) FungiDB: an integrated bioinformatic resource for fungi and oomycetes. J Fungi 4:39CrossRefGoogle Scholar
  8. Baun A, Ledin A, Reitzel LA, Bjerg PL, Christensen TH (2004) Xenobiotic organic compounds in leachates from ten Danish MSW landfills—chemical analysis and toxicity tests. Water Res 38:3845–3858CrossRefPubMedGoogle Scholar
  9. Burstein D, Sun CL, Brown CT, Sharon I, Anantharaman K, Probst AJ, Thomas BC, Banfield JF (2016) Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems. Nat Commun 7:10613CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cai Z, Li G, Lin C, Shi T, Zhai L, Chen Y, Huang G (2013) Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutagenesis. Microbiol Res 168(6):340–350CrossRefPubMedGoogle Scholar
  11. Ceasar SA, Rajan V, Prykhozhij SV, Berman JN, Ignacimuthu S (2016) Insert, remove or replace: a highly advanced genome editing system using CRISPR/Cas9. BBA-Mol Cel Res 1863:2333–2344Google Scholar
  12. Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation 172. J Ind Microbiol Biotechnol 19:324–333CrossRefPubMedGoogle Scholar
  13. Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2079–2110CrossRefGoogle Scholar
  14. Cerqueira GC, Arnaud MB, Inglis DO, Skrzypek MS, Binkley G, Simison M, Miyasato SR, Binkley J, Orvis J, Shah P (2013) The Aspergillus genome database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Res 42:D705–D710CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chakraborty BN (2015) Electroporation mediated DNA transformation of filamentous fungi. Genet Trans Syst Fungi 1:67–79Google Scholar
  16. Chylinski K, Le Rhun A, Charpentier E. (2013) The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biology 10(5):726–737Google Scholar
  17. Connell DW (2018) General characteristics of organic compounds which exhibit bioaccumulation. Bioaccumulation of xenobiotic compounds. CRC Press, Boca Raton, pp 47–58CrossRefGoogle Scholar
  18. Davies P, Kumar S, Sastry-Dent L (2017) Chapter three – use of zinc-finger nucleases for crop improvement. Prog Mol Biol Transl 149:47–63CrossRefGoogle Scholar
  19. de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Anderluh G, Asadollahi M, Askin M, Barry K, Battaglia E, Bayram Ö, Benocci T, Braus-Stromeyer SA, Caldana C, Cánovas D, Cerqueira GC, Chen F, Chen W, Choi C, Clum A, dos Santos RAC, Damásio ARL, Diallinas G, Emri T, Fekete E, Flipphi M, Freyberg S, Gallo A, Gournas C, Habgood R, Hainaut M, Harispe ML, Henrissat B, Hildén KS, Hope R, Hossain A, Karabika E, Karaffa L, Karányi Z, Kraševec N, Kuo A, Kusch H, LaButti K, Lagendijk EL, Lapidus A, Levasseur A, Lindquist E, Lipzen A, Logrieco AF, MacCabe A, Mäkelä MR, Malavazi I, Melin P, Meyer V, Mielnichuk N, Miskei M, Molnár ÁP, Mulé G, Ngan CY, Orejas M, Orosz E, Ouedraogo JP, Overkamp KM, Park H-S, Perrone G, Piumi F, Punt PJ, Ram AFJ, Ramón A, Rauscher S, Record E, Riaño-Pachón DM, Robert V, Röhrig J, Ruller R, Salamov A, Salih NS, Samson RA, Sándor E, Sanguinetti M, Schütze T, Sepčić K, Shelest E, Sherlock G, Sophianopoulou V, Squina FM, Sun H, Susca A, Todd RB, Tsang A, Unkles SE, van de Wiele N, van Rossen-Uffink D, Oliveira JVC, Vesth TC, Visser J, Yu J-H, Zhou M, Andersen MR, Archer DB, Baker SE, Benoit I, Brakhage AA, Braus GH, Fischer R, Frisvad JC, Goldman GH, Houbraken J, Oakley B, Pócsi I, Scazzocchio C, Seiboth B, vanKuyk PA, Wortman J, Dyer PS, Grigoriev IV (2017) Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol 18:28CrossRefPubMedPubMedCentralGoogle Scholar
  20. Descorps-Declère S, Barba M, Labedan B (2008) Matching curated genome databases: a non trivial task. BMC Genomics 9:501CrossRefPubMedPubMedCentralGoogle Scholar
  21. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 1258096:346Google Scholar
  22. Dufresne M, Daboussi MJ (2010) Development of impala-based transposon systems for gene tagging in filamentous fungi. Methods Mol Biol 638:41–54CrossRefPubMedGoogle Scholar
  23. Fowler T, Berka RM (1991) Gene expression systems for filamentous fungi. Curr Opin Biotechnol 2:691–697CrossRefPubMedGoogle Scholar
  24. Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds – from one strategy to four. Nat Rev Microbiol 9:803–816CrossRefGoogle Scholar
  25. Fuller KK, Chen S, Loros JJ, Dunlap JC (2015) Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryot Cell: EC 14:00107–00115CrossRefGoogle Scholar
  26. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369PubMedPubMedCentralGoogle Scholar
  28. Graham DB, Root DE (2015) Resources for the design of CRISPR gene editing experiments. Genome Biol 16:260CrossRefPubMedPubMedCentralGoogle Scholar
  29. Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:D699–D704CrossRefPubMedGoogle Scholar
  30. Guha TK, Edgell DR (2017) Applications of alternative nucleases in the age of CRISPR/Cas9. Int J Mol Sci 18:2565CrossRefPubMedCentralGoogle Scholar
  31. Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1:e60CrossRefPubMedPubMedCentralGoogle Scholar
  32. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192CrossRefGoogle Scholar
  33. Herzog RW, Daniell H, Singh NK, Lemke PA (1996) A comparative study on the transformation of Aspergillus nidulans by microprojectile bombardment of conidia and a more conventional procedure using protoplasts treated with polyethyleneglycol. Appl Microbiol Biotechnol 45:333–337CrossRefGoogle Scholar
  34. Holzbaur ELF, Tien M (1988) Structure and regulation of a lignin peroxidase gene from Phanerochaete chrysosporium. Biochem Biophys Res Commun 155:626–633CrossRefPubMedGoogle Scholar
  35. Huarte-Bonnet C, Kumar S, Saparrat MC, Girotti JR, Santana M, Hallsworth JE, Pedrini N (2018) Insights into hydrocarbon assimilation by Eurotialean and Hypocrealean Fungi: roles for CYP52 and CYP53 clans of cytochrome P450 genes. Appl Biochem Biotechnol 184:1047–1060CrossRefPubMedGoogle Scholar
  36. Iovdijová A, Bencko V (2010) Potential risk of exposure to selected xenobiotic residues and their fate in the food chain-part I. Classification of xenobiotics. Ann Agric Environ Med 17:183–192PubMedGoogle Scholar
  37. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jensen KA, Houtman CJ, Ryan ZC, Hammel KE (2001) Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 67:2705–2711CrossRefPubMedPubMedCentralGoogle Scholar
  39. Jiang Y, Yang Y, Zhang X (2014) Review on the biodegradation and conversion mechanisms of typical polycyclic aromatic hydrocarbons. Shiyou Xuebao, Shiyou Jiagong/Acta Petrolei Sin (Pet Process Sect) 30:1137–1150Google Scholar
  40. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816CrossRefPubMedGoogle Scholar
  41. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14(1):49–55CrossRefPubMedGoogle Scholar
  42. Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P, Siksnys V (2013) crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol 10(5):841–851CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kellner H, Pecyna MJ, Buchhaupt M, Ullrich R, Hofrichter M (2016) Draft genome sequence of the chloroperoxidase-producing fungus Caldariomyces fumago Woronichin DSM1256. Genome Announc 4:e00774CrossRefPubMedPubMedCentralGoogle Scholar
  44. Knackmuss H-J (1996) Basic knowledge and perspectives of bioelimination of xenobiotic compounds. J Biotechnol 51:287–295CrossRefGoogle Scholar
  45. Knop D, Ben-Ari J, Salame TM, Levinson D, Yarden O, Hadar Y (2014) Mn2+-deficiency reveals a key role for the Pleurotus ostreatus versatile peroxidase (VP4) in oxidation of aromatic compounds. Appl Microbiol Biotechnol 98:6795–6804CrossRefPubMedGoogle Scholar
  46. Kück U, Hoff B (2010) New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol 86:51–62CrossRefPubMedGoogle Scholar
  47. Kuivanen J, Penttilä M, Richard P (2015) Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production. Microb Cell Factories 14:2CrossRefGoogle Scholar
  48. Kuivanen J, Wang Y-MJ, Richard P (2016) Engineering Aspergillus niger for galactaric acid production: elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9. Microb Cell Factories 15:210CrossRefGoogle Scholar
  49. Li D, Tang Y, Lin J, Cai W (2017) Methods for genetic transformation of filamentous fungi. Microb Cell Factories 16:168CrossRefGoogle Scholar
  50. Liers C, Pecyna MJ, Kellner H, Worrich A, Zorn H, Steffen KT, Hofrichter M, Ullrich R (2013) Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood- and litter-degrading agaricomycetes compared to other fungal and plant heme-peroxidases. Appl Microbiol Biotechnol 97:5839–5849CrossRefPubMedGoogle Scholar
  51. Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV (2002) A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 30:482–496CrossRefPubMedPubMedCentralGoogle Scholar
  52. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477CrossRefPubMedGoogle Scholar
  53. Makarova KS, Haft DH, Koonin EV (2013) CRISPR-Cas systems and cas protein families. In: Protein families: relating protein sequence, structure, and function. Wiley, New York, pp 341–381CrossRefGoogle Scholar
  54. Marco-Urrea E, García-Romera I, Aranda E (2015) Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnol 32:620–628CrossRefGoogle Scholar
  55. Marraffini LA (2015) CRISPR-Cas immunity in prokaryotes. Nature 526:55–61CrossRefPubMedGoogle Scholar
  56. Martínez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzym Microb Technol 30:425–444CrossRefGoogle Scholar
  57. Mineki S, Suzuki K, Iwata K, Nakajima D, Goto S (2015) Degradation of polyaromatic hydrocarbons by fungi isolated from soil in Japan. Polycycl Aromat Compd 35:120–128CrossRefGoogle Scholar
  58. Mojica JM, Díez-Villaseñor C, Soria E, Juez G (2000) Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. Mol Microbiol 36:244–246CrossRefPubMedGoogle Scholar
  59. Mojica JM, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182CrossRefPubMedGoogle Scholar
  60. Morel M, Meux E, Mathieu Y, Thuillier A, Chibani K, Harvengt L, Jacquot J-P, Gelhaye E (2013) Xenomic networks variability and adaptation traits in wood decaying fungi. Microb Biotechnol 6:248–263CrossRefPubMedPubMedCentralGoogle Scholar
  61. Muñoz IG, Prieto J, Subramanian S, Coloma J, Redondo P, Villate M, Merino N, Marenchino M, D'Abramo M, Gervasio FL, Grizot S, Daboussi F, Smith J, Chion-Sotinel I, Pâques F, Duchateau P, Alibés A, Stricher F, Serrano L, Blanco FJ, Montoya G (2011) Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus. Nucleic Acids Res 39(2):729–743CrossRefPubMedGoogle Scholar
  62. Nakayashiki H, Nguyen QB (2008) RNA interference: roles in fungal biology. Curr Opin Microbiol 11:494–502CrossRefPubMedGoogle Scholar
  63. Nature Methods (2012) Method of the year 2011. Nat Methods 9:1CrossRefGoogle Scholar
  64. Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH (2015) A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One 10:e0133085CrossRefPubMedPubMedCentralGoogle Scholar
  65. Olicón-Hernández DR, González-López J, Aranda E (2017) Overview on the biochemical potential of filamentous fungi to degrade pharmaceutical compounds. Front Microbiol 8:1792CrossRefPubMedPubMedCentralGoogle Scholar
  66. Park J, Park B, Jung K, Jang S, Yu K, Choi J, Kong S, Park J, Kim S, Kim H (2007) CFGP: a web-based, comparative fungal genomics platform. Nucleic Acids Res 36:D562–D571CrossRefPubMedPubMedCentralGoogle Scholar
  67. Pecyna MJ, Ullrich R, Bittner B, Clemens A, Scheibner K, Schubert R, Hofrichter M (2009) Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl Microbiol Biotechnol 84:885–897CrossRefPubMedGoogle Scholar
  68. Perna NT, Plunkett G III, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157: H7. Nature 409:529CrossRefPubMedGoogle Scholar
  69. Pezzella C, Lettera V, Piscitelli A, Giardina P, Sannia G (2013) Transcriptional analysis of Pleurotus ostreatus laccase genes. Appl Microbiol Biotechnol 97:705–717CrossRefPubMedGoogle Scholar
  70. Pohl C, Kiel JA, Driessen AJ, Bovenberg RA, Nygård Y (2016) CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth Biol 5:754–764CrossRefPubMedGoogle Scholar
  71. Potin O, Rafin C, Veignie E (2004) Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. Int Biodeterior Biodegrad 54:45–52CrossRefGoogle Scholar
  72. Poulsen BR, Nøhr J, Douthwaite S, Hansen LV, Iversen JJ, Visser J, Ruijter GJ (2005) Increased NADPH concentration obtained by metabolic engineering of the pentose phosphate pathway in Aspergillus niger. FEBS J 272:1313–1325CrossRefGoogle Scholar
  73. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183CrossRefPubMedPubMedCentralGoogle Scholar
  74. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308CrossRefPubMedPubMedCentralGoogle Scholar
  75. Rath D, Amlinger L, Rath A, Lundgren M (2015) The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117:119–128CrossRefPubMedGoogle Scholar
  76. Riggle PJ, Kumamoto CA (1998) Genetic analysis in fungi using restriction-enzyme-mediated integration. Curr Opin Microbiol 1(4):395–399CrossRefPubMedGoogle Scholar
  77. Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT (2008) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60:441–452CrossRefPubMedGoogle Scholar
  78. Salame TM, Ziv C, Hadar Y, Yarden O (2011) RNAi as a potential tool for biotechnological applications in fungi. Appl Microbiol Biotechnol 89(3):501–512CrossRefPubMedGoogle Scholar
  79. Santhanam P (2012) Random insertional mutagenesis in fungal genomes to identify virulence factors. Methods Mol Biol 835:509–517CrossRefPubMedGoogle Scholar
  80. Schmid J, Stahl U, Meyer V (2009) Genetic and metabolic engineering in filamentous fungi. In: Anke T, Weber D (eds) Physiology and genetics: selected basic and applied aspects. Springer, Berlin, Heidelberg, pp 377–392CrossRefGoogle Scholar
  81. Schmidt-Dannert C (2014) NextGen microbial natural products discovery. Microb Biotechnol 8:26–28CrossRefPubMedPubMedCentralGoogle Scholar
  82. Shah SA, Erdmann S, Mojica FJ, Garrett RA (2013) Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol 10(5):891–899CrossRefPubMedPubMedCentralGoogle Scholar
  83. Shi TQ, Liu GN, Ji RY, Shi K, Song P, Ren LJ, Huang H, Ji XJ (2017) CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Appl Microbiol Biotechnol 101(20):7435–7443CrossRefPubMedGoogle Scholar
  84. Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F (2011) Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 11(1):11–27CrossRefPubMedPubMedCentralGoogle Scholar
  85. Stuckey S, Storici F (2013) Chapter eight – gene knockouts, in vivo site-directed mutagenesis and other modifications using the delitto perfetto system in Saccharomyces cerevisiae. Methods Enzymol 533:103–131CrossRefPubMedGoogle Scholar
  86. Syed K, Porollo A, Lam YW, Grimmett PE, Yadav JS (2013) CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes. Appl Environ Microbiol 79:2692–2702CrossRefPubMedPubMedCentralGoogle Scholar
  87. Talbot N (2001) Molecular and cellular biology of filamentous fungi: a practical approach. Oxford University Press, OxfordGoogle Scholar
  88. Thion C, Cébron A, Beguiristain T, Leyval C (2012) PAH biotransformation and sorption by Fusarium solani and Arthrobacter oxydans isolated from a polluted soil in axenic cultures and mixed co-cultures. Int Biodeterior Biodegrad 68:28–35CrossRefGoogle Scholar
  89. Toussaint A, Merlin C, Monchy S, Benotmane MA, Leplae R, Mergeay M, Springael D (2003) The biphenyl-and 4-chlorobiphenyl-catabolic transposon Tn4371, a member of a new family of genomic islands related to IncP and Ti plasmids. Appl Environ Microbiol 69:4837–4845CrossRefPubMedPubMedCentralGoogle Scholar
  90. Tran NH, Urase T, Ngo HH, Hu J, Ong SL (2013) Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresour Technol 146:721–731CrossRefPubMedGoogle Scholar
  91. Wakai S, Arazoe T, Ogino C, Kondo A (2017) Future insights in fungal metabolic engineering. Bioresour Technol 245:1314–1326CrossRefPubMedGoogle Scholar
  92. Wang Y, Guo B, Miao Z, Tang K (2007) Transformation of taxol-producing endophytic fungi by restriction enzyme-mediated integration (REMI). FEMS Microbiol Lett 273(2):253–259CrossRefPubMedGoogle Scholar
  93. Wang D, He D, Li G, Gao S, LV H, Shan Q, Wang L (2014) An efficient tool for random insertional mutagenesis: Agrobacterium tumefaciens-mediated transformation of the filamentous fungus Aspergillus terreus. J Microbiol Methods 98:114–118CrossRefPubMedGoogle Scholar
  94. Wang L, Shao Y, Guan Y, Li L, Wu L, Chen F, Liu M, Chen H, Ma Y, Ma X, Liu M, Li D (2015) Large genomic fragment deletion and functional gene cassette knock-in via Cas9 protein mediated genome editing in one-cell rodent embryos. Sci Rep 5:17517CrossRefPubMedPubMedCentralGoogle Scholar
  95. Watford S, Warrington SJ (2017) Bacterial DNA mutations. StatPearls Publishing, Treasure IslandGoogle Scholar
  96. Wisecaver JH, Slot JC, Rokas A (2014) The evolution of fungal metabolic pathways. PLoS Genet 10:e1004816CrossRefPubMedPubMedCentralGoogle Scholar
  97. Wittich R-M, González B (2016) Editorial overview: environmental biotechnology–quo vadis? Curr Opin Biotechnol 38:viii–viixCrossRefPubMedGoogle Scholar
  98. Yan W, Smith C, Cheng L (2013) Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing. Sci Rep 3:2376CrossRefPubMedPubMedCentralGoogle Scholar
  99. Zheng Y-M, Lin F-L, Gao H, Zou G, Zhang J-W, Wang G-Q, Chen G-D, Zhou Z-H, Yao X-S, Hu D (2017) Development of a versatile and conventional technique for gene disruption in filamentous fungi based on CRISPR-Cas9 technology. Sci Rep 7:9250CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Water ResearchUniversity of GranadaGranadaSpain
  2. 2.Departamento de Genética, Facultad de CienciasUniversidad de GranadaGranadaSpain
  3. 3.Department of Microbiology, Faculty of Pharmacy, and Institute of Water ResearchUniversity of GranadaGranadaSpain

Personalised recommendations