Skip to main content

Data Literacy as a Compound Competence

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 850)

Abstract

Data literacy can be defined as a compound competence consisting of some level of competence in statistics, data visualization and more generic competencies in problem-solving using different data. Data literacy is closely related to data science but differs in the level of competence. While data science is a specific domain for trained specialists, data literacy is suggested as a central element in education preparing all young people to become citizens in an information society. In presenting two exemplars of resources and practices that both rely on and foster the attainment of data literacy it is proposed that data literacy is best defined as a compound competence that first and foremost can be ascribed to a community of practice rather than the single individual. The definition, therefore, calls for new and further interdisciplinary collaboration that integrates different competencies and levels of skill.

Keywords

  • Data literacy
  • Data science
  • Education

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-02351-5_21
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-02351-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    The ‘comune’ is the basic administrative unit in Italy ranging from cities to municipalities. In 2017 there was 7,978 units in Italy.

  2. 2.

    http://www.datakind.org/.

  3. 3.

    http://opendataday.org/.

  4. 4.

    https://www.coursera.org/browse/data-science.

References

  1. Bhargava, R., Deahl, E., Letouzé, E., Noonan, A., Sangokoya, D., Shoup, N.: Beyond data literacy: reinventing community engagement and empowerment in the age of data (2015)

    Google Scholar 

  2. Bell, G., Hey, T., Szalay, A.: Beyond the data deluge. Science 323, 1297–1298 (2009)

    CrossRef  Google Scholar 

  3. Boud, D., Cohen, R., Sampson, J.: Peer learning and assessment. Assess. Eval. Higher Educ. 24, 413–426 (1999)

    CrossRef  Google Scholar 

  4. Bruschi, M.: L’Italia delle slot. Ovvero: di Foia, pdf, database e inchieste collettive (Slot-Machines in Italy: About Freedom-of-Information-Act, pdf, Database and Collective Inquiry) (2017). https://medium.com/visuallab/litalia-delle-slot-ovvero-di-foia-pdf-database-e-inchieste-collettive-562686eb2f02

  5. Chou, S., Li, W., Sridharan, R.: Democratizing data science. In: Proceedings of the KDD 2014 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA. pp. 24–27. Citeseer (2014)

    Google Scholar 

  6. Conway, D.: The Data Science Venn Diagram. http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

  7. Donohue, S.: What Can Civic Tech Learn from Social Movements? | Omidyar Network. https://www.omidyar.com/spotlight/what-can-civic-tech-learn-social-movements

  8. Fischer, G., Rohde, M., Wulf, V.: Spiders in the net: universities as facilitators of community-based learning. In: Carroll, J.M. (ed.) Learning in Communities: Interdisciplinary Perspectives on Human Centered Information Technology, pp. 17–20. Springer, London (2009)

    CrossRef  Google Scholar 

  9. Frank, M., Walker, J., Attard, J., Tygel, A.: Data Literacy: what is it and how can we make it happen? Editorial. JoCI. 12, 4–8 (2016)

    Google Scholar 

  10. GEDI: L’Italia delle slot—Scopri quanto si gioca nel tuo Comune. https://lab.gedidigital.it/finegil/2017/italia-delle-slot/

  11. Gurstein, M.B.: Open data: empowering the empowered or effective data use for everyone? First Monday 16 (2011)

    Google Scholar 

  12. Hou, Y., Wang, D.: Hacking with NPOs: collaborative analytics and broker roles in civic data hackathons. Proc. ACM Hum. Comput. Interact. 1, 1–16 (2017)

    CrossRef  Google Scholar 

  13. Littlejohn, A., Beetham, H., McGill, L.: Learning at the digital frontier: a review of digital literacies in theory and practice. J. Comput. Assist. Learn. 28, 547–556 (2012)

    CrossRef  Google Scholar 

  14. Markauskaite, L., Goodyear, P.: Epistemic Fluency and Professional Education: Innovation, Knowledgeable Action and Actionable Knowledge. Springer, Amsterdam (2017)

    CrossRef  Google Scholar 

  15. Mau, S.: Das metrische Wir: über die Quantifizierung des Sozialen (The Metric We: About the Quantification of the Social). Suhrkamp Verlag, Frankfurt am Main (2017)

    Google Scholar 

  16. Mayer-Schönberger, V., Cukier, K.: Big Data: A Revolution That Will Transform How We Live, Work, and Think. Houghton Mifflin Harcourt, New York (2013)

    Google Scholar 

  17. Pentland, A.: The data-driven society. Sci. Am. 309, 78–83 (2013)

    CrossRef  Google Scholar 

  18. Ridsdale, C., Rothwell, J., Smit, M., Ali-Hassan, H., Bliemel, M., Irvine, D., Kelley, D., Matwin, S., Wuetherick, B.: Strategies and best practices for data literacy education: knowledge synthesis report (2015)

    Google Scholar 

  19. Samuels, R.: Auto-modernity after postmodernism: autonomy and automation in culture, technology, and education. In: McPherson, T. (ed.) Digital Youth, Innovation, and the Unexpected, pp. 219–240. The MIT Press, Cambridge (2008)

    Google Scholar 

  20. Sharif, R., Van Schalkwyk, F.: Introduction. JoCI. 12, 4–8 (2016)

    Google Scholar 

  21. Stella, G.A.: Il Tar multa il sindaco anti slot-machine (The Regional Administrative Court fines the Mayor against slot machines). http://www.corriere.it/cronache/12_marzo_23/stella-il-sindaco-anti-slot-machine_c5b92a22–74af-11e1-9cbf-6c08e5424a86.shtml

  22. Talamo, G., Manuguerra, G.: The gambling sector: a socio-economic analysis of the case of Italy. East. Eur. Bus. Econ. J. 2, 315–330 (2016)

    Google Scholar 

  23. UCL: Arts and Sciences (BASc) Programmes. http://www.ucl.ac.uk

  24. Vermanen, J.: Harnessing external expertise through hackthons. In: Gray, J., Bounegru, L., Chambers, L. (eds.) The Data Journalism Handbook: How Journalists Can Use Data to Improve the News, pp. 44–47. O’Reilly Media Inc, Sebastopol (2012)

    Google Scholar 

  25. Wenger, E.: Communities of Practice: Learning, Meaning, and Identity. Cambridge University Press, Cambridge (1998)

    CrossRef  Google Scholar 

  26. Wolff, A., Gooch, D., Montaner, J.C., Rashid, U., Kortuem, G.: Creating an understanding of data literacy for a data-driven society. JoCI. 12, 9–26 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Young Pedersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Pedersen, A.Y., Caviglia, F. (2019). Data Literacy as a Compound Competence. In: Antipova, T., Rocha, A. (eds) Digital Science. DSIC18 2018. Advances in Intelligent Systems and Computing, vol 850. Springer, Cham. https://doi.org/10.1007/978-3-030-02351-5_21

Download citation