Skip to main content

Design and Synthesis of Hybrid Materials with POSS

  • Chapter
  • First Online:
Polymer/POSS Nanocomposites and Hybrid Materials

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

This chapter describes essential aspects related to design and fabrication of organic–inorganic hybrid structure based on polymeric materials and polyhedral oligomeric silsesquioxane (POSS). POSS is a class of organosilicic three-dimensional compounds with cage or non-cage framework. The POSS nanoparticle possesses size of few nm and has monodisperse and rigid structure. The POSS nanoparticle also has unique capability to reinforce numerous polymers (polyamide, epoxy, polyurethane, poly(vinyl chloride), poly(ethylene glycol), etc.). Various strategies have been adopted for the incorporation of POSS into polymer matrices via chemical cross-linking or physical blending. The design and structure of final hybrids have been found to influence by POSS surface functional groups and POSS content. Owing to POSS nanometer size and exceptional features, the hybrid materials own superior structural and functional properties such as mechanical strength, thermal stability, optical properties, low toxicity, and biocompatibility. The state of POSS-containing polymer hybrids with respect to current challenges and future prospects has also been described. The focus of this article is to present an account of fundamental understanding of structure, functional properties, synthesis, and design challenges of POSS-containing polymer hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kausar A (2017) State-of-the-art overview on polymer/POSS nanocomposite. Polym-Plast Technol Eng 1–20

    Google Scholar 

  2. Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173

    Article  CAS  Google Scholar 

  3. Waddon AJ, Coughlin EB (2003) Crystal structure of polyhedral oligomeric silsequioxane (POSS) nano-materials: a study by X-ray diffraction and electron microscopy. Chem Mater 15:4555–4561

    Article  CAS  Google Scholar 

  4. Devaraju S, Vengatesan MR, Selvi M, Kumar AA, Alagar M (2012) Synthesis and characterization of bisphenol-A ether diamine-based polyimide POSS nanocomposites for low K dielectric and flame-retardant applications. High Perform Polym DOI:0954008311433606

    Google Scholar 

  5. Dalwani M, Zheng J, Hempenius M, Raaijmakers MJ, Doherty CM, Hill AJ, Wessling M, Benes NE (2012) Ultra-thin hybrid polyhedral silsesquioxane–polyamide films with potentially unlimited 2D dimensions. J Mater Chem 22:14835–14838

    Article  CAS  Google Scholar 

  6. Tian B, Gao J, Wang C, Huo L (2015) Synthesis of methylacryloypropyl-POSS/poly (fluorine-acrylate) core-shell nanocomposites and effect on thermal properties of materials. Polym-Plast Technol Eng 54:771–778

    Article  CAS  Google Scholar 

  7. Li S, Simon GP, Matisons JG (2010) The effect of incorporation of POSS units on polymer blend compatibility. J Appl Polym Sci 115:1153–1159

    Article  CAS  Google Scholar 

  8. Roy R, Komarneni S, Roy DM (1984) Multi-Phasic ceamic composites made by sol- gel technique. Mater Res Soc Symp Pro 32:347–359

    Article  CAS  Google Scholar 

  9. McNally T, Murphy WR, Lew CY, Turner RJ, Brennan GP (2003) Polyamide-12 layered silicate nanocomposites by melt blending. Polymer 44:2761–2772

    Article  CAS  Google Scholar 

  10. Lichtenhan JD, Otonari YA, Carr MJ (1995) Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers. Macromolecules 28:8435–8437

    Article  CAS  Google Scholar 

  11. Kuo SW, Chang FC (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649–1696

    Article  CAS  Google Scholar 

  12. Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173

    Article  CAS  Google Scholar 

  13. Zhou H, Ye Q, Xu J (2017) Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Mater Chem Front https://doi.org/10.1039/c6qm00062b

    Article  CAS  Google Scholar 

  14. Barry AJ (1946) Viscometric investigation of dimethylsiloxane polymers. J Appl Phys 17:1020–1024

    Article  CAS  Google Scholar 

  15. Jeziorska R, Świerz-Motysia BARBARA, Szadkowska A, Marciniec B, Maciejewski H, Dutkiewicz MICHAŁ, Leszczyńska IRENA (2011) Effect of POSS on morphology, thermal and mechanical properties of polyamide 6. Polimery 56:809–816

    CAS  Google Scholar 

  16. Lim S-K, Hong E-P, Choi HJ, Chin IJ (2010) Polyhedral oligomeric silsesquioxane and polyethylene nanocomposites and their physical characteristics. J Indus Eng Chem 16:189–192

    Article  CAS  Google Scholar 

  17. Mantz RA, Jones PF, Chaffee KP, Lichtenhan JD, Gilman JW, Ismail IMK, Burmeister MJ (1996) Thermolysis of polyhedral oligomeric silsesquioxane (poss) macromers and posssiloxane copolymers. Chem Mater 8:1250–1259

    Article  CAS  Google Scholar 

  18. Zhou Z, Cui L, Zhang Y, Zhang Y, Yin N (2008) Preparation and properties of POSS grafted polypropylene by reactive blending. Eur Polym J 44:3057–3066

    Article  CAS  Google Scholar 

  19. Wang X, Xuan S, Song L, Yang H, Lu H, Hu Y (2011) Synergistic effect of POSS on mechanical properties, flammability, and thermal degradation of intumescent flame retardant polylactide composites. J Macromol Sci B 51:255–268

    Article  Google Scholar 

  20. Wang W, Guo Y-L, Otaigbe JU (2009) The synthesis, characterization and biocompatibility of poly(ester urethane)/polyhedral oligomeric silesquioxane nanocomposites. Polymer 50:5749–5757

    Article  CAS  Google Scholar 

  21. Guo Y-L, Wang W, Otaigbe JU (2010) Biocompatibility of synthetic poly(ester urethane)/polyhedral oligomeric silsesquioxane matrices with embryonic stem cell proliferation and differentiation. J Tissue Eng Regener Med 4:553–564

    Article  CAS  Google Scholar 

  22. Wu J, Haddad TS, Mather PT (2009) Vertex group effects in entangled polystyrenepolyhedral oligosilsesquioxane (POSS) copolymers. Macromolecules 42:1142–1152

    Article  CAS  Google Scholar 

  23. Gnanasekaran D, Madhavpan K, Reddy RSR (2009) Developments of polyhedral oligomeric silsesquioxanes (POSS), POSS nanocomposites and their applications: a review. J Sci Ind Res 68:437–464

    CAS  Google Scholar 

  24. Dintcheva NTz, Morici E, Arrigo R, La Mantia FP, Malatesta V, Schwab JJ (2012) UV-stabilisation of polystyrene-based nanocomposites provided by polyhedral oligomeric silsesquioxanes (POSS). Polym Degrad Stab 97:2313–2322

    Article  CAS  Google Scholar 

  25. Markovic E, Matisons J, Hussain M, Simon GP (2007) Poly(ethylene glycol) octafunctionalized polyhedral oligomeric silsesquioxane: WAXD and rheological studies. Macromolecules 40:4530–4534

    Article  CAS  Google Scholar 

  26. Zhao H, Shu J, Chen Q, Zhang S (2012) Quantitative structural characterization of POSS and octavinyl-POSS nanocomposites by solid state NMR. Solid State Nucl Mag 43:56–61

    Article  CAS  Google Scholar 

  27. Dintcheva NTZ, Morici E, Arrigo R, La Mantia FP, Malatesta V, Schwab JJ (2012) Structure-properties relationships of polyhedral oligomeric silsesquioxane (POSS) filled PS nanocomposites. Express Polym Lett 6:561–571

    Article  CAS  Google Scholar 

  28. Lu CH, Wang JH, Chang FC, Kuo SW (2010) Star block copolymers through nitroxide-mediated radical polymerization from polyhedral oligomeric silsesquioxane (POSS) Core. Macromol Chem Phys 211:1339–1347

    Article  CAS  Google Scholar 

  29. Iyer S, Schiraldi DA (2007) Role of specific interactions and solubility in the reinforcement of bisphenol A polymers with polyhedral oligomeric silsesquioxanes. Macromolecules 40:4942–4952

    Article  CAS  Google Scholar 

  30. Liu H, Kondo S, Tanaka R, Oku H, Unno M (2008) A spectroscopic investigation of incompletely condensed polyhedral oligomeric silsesquioxanes (POSS-mono-ol, POSS-diol and POSS-triol): Hydrogen-bonded interaction and host–guest complex. J Organomet Chem 693:1301–1308

    Article  CAS  Google Scholar 

  31. Zhang W, Müller AH (2013) Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog Polym Sci 38:1121–1162

    Article  CAS  Google Scholar 

  32. Lichtenhan JD, Schwab JJ, Reinerth WA (2001) Nanostructured chemicals: a new era in chemical technology. Chem Innovat 31:3–5

    CAS  Google Scholar 

  33. Ellsworth MW, Gin DL (1999) Recent advances in the design and synthesis of polymer-inorganic nanocomposites. Polym News 24:331–340

    CAS  Google Scholar 

  34. Feher FJ, Weller KJ (1991) Synthesis and characterization of labile spherosilicates:[(Me3SnO)8Si8O12] and [(Me4SbO) 8Si8O12]. Inorg Chem 30:880–882

    Article  CAS  Google Scholar 

  35. Haddad TS, Stapleton R, Jeon HG, Mather PT, Lichtenhan JD, Phillips S (1999) Nanostructured hybrid organic/inorganic materials. Silsesquioxane modified plastics. In Abstracts Of Papers Of The American Chemical Society. vol 217. pp U608-U608

    Google Scholar 

  36. Koberstein JT, Galambos AF, Leung LM (1992) Compression-molded polyurethane block copolymers. 1. Microdomain Morphol Thermomechanical Prop Macromol 25:6195–6204

    CAS  Google Scholar 

  37. Lattimer RP, Polce MJ, Wesdemiotis C (1998) MALDI-MS analysis of pyrolysis products from a segmented polyurethane. J Anal Appl Pyrol 48:1–15

    Article  CAS  Google Scholar 

  38. Lewicki JP, Pielichowski K, De La Croix PT, Janowski B, Todd D, Liggat JJ (2010) Thermal degradation studies of polyurethane/POSS nanohybrid elastomers. Polym Degrad Stab 95:1099–1105

    Article  CAS  Google Scholar 

  39. Devaux E, Rochery M, Bourbigot S (2002) Polyurethane/clay and polyurethane/POSS nanocomposites as flame retarded coating for polyester and cotton fabrics. Fire Mater 26:149–154

    Article  CAS  Google Scholar 

  40. Fu BX, Hsiao BS, Pagola S, Stephens P, White H, Rafailovich M, Sokolov J, Mather PT, Jeon HG, Phillips S, Lichtenhan J (2001) Structural development during deformation of polyurethane containing polyhedral oligomeric silsesquioxanes (POSS) molecules. Polymer 42:599–611

    Article  CAS  Google Scholar 

  41. Lee A, Lichtenhan JD (1998) Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems. Macromolecules 31:4970–4974

    Article  CAS  Google Scholar 

  42. Mather PT, Jeon HG, Romo-Uribe A, Haddad TS, Lichtenhan JD (1999) Mechanical relaxation and microstructure of poly(norbornyl-poss) copolymers. Macromolecules 32:1194–2203

    Article  CAS  Google Scholar 

  43. Zhang Z, Gu A, Liang G, Ren P, Xie J, Wang X (2007) Thermo-oxygen degradation mechanisms of POSS/epoxy nanocomposites. Polym Degrad Stab 92:1986–1993

    Article  CAS  Google Scholar 

  44. Ramírez C, Rico M, Torres A, Barral L, López J, Montero B (2008) Epoxy/POSS organic–inorganic hybrids: ATR-FTIR and DSC studies. Eur Polym J 44:3035–3045

    Article  Google Scholar 

  45. Iles A, Martin AN (2013) Expanding bioplastics production: sustainable business innovation in the chemical industry. J Cleaner Prod 45:38–49

    Article  CAS  Google Scholar 

  46. Wu J, Ge Q, Mather PT (2010) PEG-POSS multiblock polyurethanes: synthesis, characterization, and hydrogel formation. Macromolecules 43:7637–7649

    Article  CAS  Google Scholar 

  47. Turan D, Sirin H, Ozkoc G (2011) Effects of POSS particles on the mechanical, thermal, and morphological properties of PLA and plasticised PLA. J Appl Polym Sci 121:1067–1075

    Article  CAS  Google Scholar 

  48. Jung CH, Hwang IT, Jung CH, Choi JH (2014) Preparation of flexible PLA/PEG-POSS nanocomposites by melt blending and radiation crosslinking. Radiat Phys Chem 102:23–28

    Article  CAS  Google Scholar 

  49. Iyer S, Schiraldi D (2005) Synthesis and properties of copolymers of polyesters and polyamides with polyhedral oligomeric silsesquioxanes (POSS); comparison with blended materials. PMSE Prepr 92:326–327

    CAS  Google Scholar 

  50. Ricco L, Russo S, Monticelli O, Bordo A, Bellucci F (2005) ε-Caprolactam polymerization in presence of polyhedral oligomeric silsesquioxanes (POSS). Polymer 46:6810–6819

    Article  CAS  Google Scholar 

  51. Liu YL, Lee HC (2006) Preparation and properties of polyhedral oligosilsequioxane tethered aromatic polyamide nanocomposites through Michael addition between maleimide-containing polyamides and an amino-functionalized polyhedral oligosilsequioxane. J Polym Sci Part A Polym Chem 44:4632–4643

    Article  CAS  Google Scholar 

  52. Zhao F, Bao X, McLauchlin AR, Gu J, Wan C, Kandasubramanian B (2010) Effect of POSS on morphology and mechanical properties of polyamide 12/montmorillonite nanocomposites. Appl Clay Sci 47:249–256

    Article  CAS  Google Scholar 

  53. Moon JH, Katha AR, Pandian S, Kolake SM, Han S (2014) Polyamide–POSS hybrid membranes for seawater desalination: effect of POSS inclusion on membrane properties. J Membr Sci 461:89–95

    Article  CAS  Google Scholar 

  54. Pacheco F, Sougrat R, Reinhard M, Leckie JO, Pinnau I (2016) 3D visualization of the internal nanostructure of polyamide thin films in RO membranes. J Membr Sci 501:33–44

    Article  CAS  Google Scholar 

  55. Soong SY, Cohen RE, Boyce MC, Mulliken AD (2006) Rate-dependent deformation behavior of POSS-filled and plasticized poly (vinyl chloride). Macromolecules 39:2900–2908

    Article  CAS  Google Scholar 

  56. Soong SY, Cohen RE, Boyce MC (2007) Polyhedral oligomeric silsesquioxane as a novel plasticizer for poly (vinyl chloride). Polymer 48:1410–1418

    Article  CAS  Google Scholar 

  57. Zheng L, Kasi RM, Farris RJ, Coughlin EB (2007) Synthesis and thermal properties of hybrid copolymers of syndiotactic poystyrene and polyhedral oligomeric silsesquioxane. J Polym Sci Part A Polym Chem 40:885

    Article  CAS  Google Scholar 

  58. Rios-Dominguez H, Ruiz-Trevino FA, Contreras-Reyes R, Gonzalez-Montiel A (2006) Syntheses and evaluation of gas transport properties in polystyrene–POSS membranes. J Mater Sci 271:94–100

    CAS  Google Scholar 

  59. Fina A, Abbenhuis HCL, Tabuani D, Frache A, Camino G (2006) Polypropylene metal functionalised POSS nanocomposites: a study by thermogravimetric analysis. Polym Degrad Stab 91:1064–1070

    Article  CAS  Google Scholar 

  60. Jash P, Wilkie CA (2005) Effects of surfactants on the thermal and fire properties of poly (methyl methacrylate)/clay nanocomposites. Polym Degrad Stab 88:401–406

    Article  CAS  Google Scholar 

  61. Costa RO, Vasconcelos WL, Tamaki R, Laine RM (2001) Organic/inorganic nanocomposite star polymers via atom transfer radical polymerization of methyl methacrylate using octafunctional silsesquioxane cores. Macromolecules 34:5398–5407

    Article  CAS  Google Scholar 

  62. Xu W, Chung C, Kwon Y (2007) Synthesis of novel block copolymerscontaining polyhedral oligomeric silsesquioxane (POSS) pendentgroups via ring-opening metathesis polymerization (ROMP). Polymer 48:6286–6293

    Article  CAS  Google Scholar 

  63. Ye YS, Shen WC, Tseng CY, Rick J, Huang YJ, Chang FC, Hwang BJ (2011) Versatile grafting approaches to star-shaped POSS-containing hybrid polymers using RAFT polymerization and click chemistry. Chem Communicat 47:10656–10658

    Article  CAS  Google Scholar 

  64. Moses JE, Moorhouse AD (2007) The growing applications of click chemistry. Chem Soc Rev 36:1249–1262

    Article  CAS  Google Scholar 

  65. Agard NJ, Prescher JA, Bertozzi CR (2004) A strain-promoted 3 + 2azide-alkyne cycloaddition for covalent modification of blo-molecules in living systems. J Am Chem Soc 126:15046–15047

    Article  CAS  Google Scholar 

  66. Zhang WA, Muller AHE (2010) Synthesis of tadpole-shaped PUSS-containing hybrid polymers via “click chemistry”. Polymer 51:2133–2139

    Article  CAS  Google Scholar 

  67. Zhang Y, Lee S, Yoonessi M, Liang K, Pittman CU (2006) Phenolic resin–trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites: structure and properties. Polymer 47:2984–2996

    Article  CAS  Google Scholar 

  68. Bizet S, Galy J, Gérard JF (2006) Structure-property relationships in organic − inorganic nanomaterials based on methacryl − POSS and dimethacrylate networks. Macromolecules 39:2574–2583

    Article  CAS  Google Scholar 

  69. Chhabra P, Choudhary V (2010) Polymer nanocomposite membranes based on sulfonated poly(ether ether ketone) and trisilanol phenyl POSS for fuel cell applications. J Appl Polym Sci 118:3013–3023

    Article  CAS  Google Scholar 

  70. Raftopoulos KN, Pielichowski K (2016) Segmental dynamics in hybrid polymer/POSS nanomaterials. Prog Polym Sci 52:136–187

    Article  CAS  Google Scholar 

  71. DeArmitt C (2010) Polyherdral Oligomeric Silesquioxane Handbook. In: Phanom plastics. POSS and Hybrid Plastics are registered trademarks of Hybrid Plastics Inc., USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayesha Kausar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kausar, A. (2018). Design and Synthesis of Hybrid Materials with POSS. In: Kalia, S., Pielichowski, K. (eds) Polymer/POSS Nanocomposites and Hybrid Materials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-02327-0_2

Download citation

Publish with us

Policies and ethics