Skip to main content

Understanding Taxi Travel Demand Patterns Through Floating Car Data

  • Conference paper
  • First Online:
Data Analytics: Paving the Way to Sustainable Urban Mobility (CSUM 2018)


This paper analyses the current structure of taxi service use in Rome, processing taxi Floating Car Data (FCD). The methodology used to pass from the original data to data useful for the demand analyses is described. Further, the patterns of within-day and day-to-day service demand are reported, considering the origin, the destination and other characteristics of the trips (e.g. travel time). The analyses reported in the paper can help the definition of space-temporal characteristics of future Shared Autonomous Electrical Vehicles (SAEVs) demand in mobility scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. Nuzzolo, A., Persia, L., Comi, A., Polimeni, A.: Shared autonomous electrical vehicles and urban mobility: a vision for Rome in 2035. In: Nathanail, E., Karakikes, I.D. (eds.) CSUM 2018. AISC, vol. 879, pp. 772–779. Springer, Cham (2019).

  2. Bischoff, J., Maciejewski, M., Sohr, A.: Analysis of Berlin’s taxi services by exploring GPS traces. In: Proceedings of the International Conference on Models and Technologies for Intelligent Transportation System (2015)

    Google Scholar 

  3. Yang, Z., Franz, M.L., Zhu, S., Mahmoudi, J., Nasri, A., Zhang, L.: Analysis of Washington, DC taxi demand using GPS and land-use data. J. Transp. Geogr. 66, 35–44 (2018)

    Article  Google Scholar 

  4. Tang, J., Liu, F., Wang, Y., Wang, H.: Uncovering urban human mobility from large scale taxi GPS data. Physica A. Stat. Mech. Appl. 438, 140–153 (2015)

    Article  Google Scholar 

  5. Liu, X., Gong, L., Gong, Y., Liu, Y.: Revealing travel patterns and city structure with taxi trip data. J. Transp. Geogr. 43, 78–90 (2015)

    Article  Google Scholar 

  6. Ferreira, N., Poco, J., Vo, H.T., Freire, J., Silva, C.T.: Visual exploration of big spatio-temporal urban data: a study of New York City taxi trips. IEEE Trans. Vis. Comput. Graph. 19(12), 2149–2158 (2013)

    Article  Google Scholar 

  7. Jianqin, Z., Peiyuan, Q., Yingchao, D., Mingyi, D., Feng, L.: A space-time visualization analysis method for taxi operation in Beijing. J. Vis. Lang. Comput. 31(A), 1–8 (2015)

    Article  Google Scholar 

  8. Cai, H., Zhan, X., Zhu, J., Jia, X., Chiu, A.S.F., Xu, M.: Understanding taxi travel patterns. Physica A. Stat. Mech. Appl. 457, 590–597 (2016)

    Article  Google Scholar 

  9. Wang, W., Pan, L., Yuan, N., Zhang, S., Liu, D.: A comparative analysis of intra-city human mobility by taxi. Physica A. Stat. Mech. Appl. 420, 134–147 (2015)

    Article  Google Scholar 

  10. Bracciale L., Bonola M., Loreti P., Bianchi G., Amici R., Rabuffi A.: CRAWDAD dataset roma/taxi. Accessed 02 Feb 2018

Download references


The authors want to thank Luis Moreira-Matias for the help in data retrieval and Claudia Proietti for the support in data elaboration.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Agostino Nuzzolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nuzzolo, A., Comi, A., Papa, E., Polimeni, A. (2019). Understanding Taxi Travel Demand Patterns Through Floating Car Data. In: Nathanail, E., Karakikes, I. (eds) Data Analytics: Paving the Way to Sustainable Urban Mobility. CSUM 2018. Advances in Intelligent Systems and Computing, vol 879. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02304-1

  • Online ISBN: 978-3-030-02305-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics