Skip to main content

Searching for a Compressed Polyline with a Minimum Number of Vertices (Discrete Solution)

  • Conference paper
  • First Online:
Graphics Recognition. Current Trends and Evolutions (GREC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11009))

Included in the following conference series:

Abstract

There are many practical applications that require the simplification of polylines. Some of the goals are to reduce the amount of information, improve processing time, or simplify editing. Simplification is usually done by removing some of the vertices, making the resultant polyline go through a subset of the source polyline vertices. If the resultant polyline is required to pass through original vertices, it often results in extra segments, and all segments are likely to be shifted due to fixed endpoints. Therefore, such an approach does not necessarily produce a new polyline with the minimum number of vertices. Using an algorithm that finds the compressed polyline with the minimum number of vertices reduces the amount of memory required and the postprocessing time. However, even more important, when the resultant polylines are edited by an operator, the polylines with the minimum number of vertices decrease the operator time, which reduces the cost of processing the data. A viable solution to finding a polyline within a specified tolerance with the minimum number of vertices is described in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The expected number of points in the convex hull for the N random points in any rectangle is \(O{\left( \log { \left( N \right) } \right) }\), see [13]. If the source polyline has parts close to an arc, the size of the convex hull tends to increase. In a worst case, the number of vertices in the convex hull is equal to the number of vertices in the original set.

References

  1. Missouri spatial data information service. http://msdis.missouri.edu/data/lidar/index.html

  2. Saint Louis County, Missouri. http://www.stlouisco.com/OnlineServices/MappingandData

  3. Bodansky, E., Gribov, A.: Approximation of polylines with circular arcs. In: Lladós, J., Kwon, Y.-B. (eds.) GREC 2003. LNCS, vol. 3088, pp. 193–198. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25977-0_18

    Chapter  Google Scholar 

  4. Bodansky, E., Gribov, A.: Approximation of a polyline with a sequence of geometric primitives. In: Campilho, A., Kamel, M. (eds.) ICIAR 2006. LNCS, vol. 4142, pp. 468–478. Springer, Heidelberg (2006). https://doi.org/10.1007/11867661_42

    Chapter  Google Scholar 

  5. Chan, W.S., Chin, F.: Approximation of polygonal curves with minimum number of line segments or minimum error. Int. J. Comput. Geomet. Appl. 06(01), 59–77 (1996). https://doi.org/10.1142/S0218195996000058

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, F., Ren, H.: Comparison of vector data compression algorithms in mobile GIS. In: 2010 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT), vol. 1, pp. 613–617, July 2010. https://doi.org/10.1109/ICCSIT.2010.5564118

  7. Dorst, L.: Total least squares fitting of k-Spheres in n-D Euclidean space using an (n+2)-D isometric representation. J. Math. Imaging Vis. 50(3), 214–234 (2014). https://doi.org/10.1007/s10851-014-0495-2

    Article  MATH  Google Scholar 

  8. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica Int. J. Geograph. Inf. Geovisualization 10(2), 112–122 (1973). https://doi.org/10.3138/fm57-6770-u75u-7727

    Article  Google Scholar 

  9. Gribov, A.: Approximate fitting of circular arcs when two points are known. ArXiv e-prints, May 2015. http://arxiv.org/abs/1504.06582

  10. Gribov, A.: Optimal compression of a polyline with segments and arcs. ArXiv e-prints, April 2016. http://arxiv.org/abs/1604.07476

  11. Gribov, A., Bodansky, E.: A new method of polyline approximation. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR/SPR 2004. LNCS, vol. 3138, pp. 504–511. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27868-9_54

    Chapter  Google Scholar 

  12. Gribov, A., Bodansky, E.: Reconstruction of orthogonal polygonal lines. In: Bunke, H., Spitz, A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp. 462–473. Springer, Heidelberg (2006). https://doi.org/10.1007/11669487_41

    Chapter  Google Scholar 

  13. Har-Peled, S.: On the expected complexity of random convex hulls. CoRR abs/1111.5340, December 2011. http://arxiv.org/abs/1111.5340

  14. Hershberger, J., Snoeyink, J.: Speeding up the Douglas-Peucker line-simplification algorithm. In: Proceedings of the 5th International Symposium on Spatial Data Handling, pp. 134–143 (1992)

    Google Scholar 

  15. Ichoku, C., Deffontaines, B., Chorowicz, J.: Segmentation of digital plane curves: a dynamic focusing approach. Patt. Recogn. Lett. 17(7), 741–750 (1996). https://doi.org/10.1016/0167-8655(96)00015-3

    Article  Google Scholar 

  16. Landau, U.M.: Estimation of a circular arc center and its radius. Comput. Vis. Graph. Image Process. 38(3), 317–326 (1987). https://doi.org/10.1016/0734-189X(87)90116-2

    Article  Google Scholar 

  17. Robinson, S.M.: Fitting spheres by the method of least squares. Commun. ACM 4(11), 491 (1961). https://doi.org/10.1145/366813.366824

    Article  MathSciNet  MATH  Google Scholar 

  18. Safonova, A., Rossignac, J.: Compressed piecewise-circular approximations of 3D curves. Comput.-Aided Des. 35, 533–547 (2003). https://doi.org/10.1016/S0010-4485(02)00073-8

    Article  MATH  Google Scholar 

  19. Thomas, S.M., Chan, Y.T.: A simple approach for the estimation of circular arc center and its radius. Comput. Vis. Graph. Image Process. 45(3), 362–370 (1989). https://doi.org/10.1016/0734-189X(89)90088-1

    Article  Google Scholar 

  20. Yin, L., Yajie, Y., Wenyin, L.: Online segmentation of freehand stroke by dynamic programming. In: Eighth International Conference on Document Analysis and Recognition, vol. 1, pp. 197–201, August 2005. https://doi.org/10.1109/ICDAR.2005.180

Download references

Acknowledgments

The author would like to thank Linda Thomas and Mary Anne Chan for proofreading this paper; and Arthur Crawford for helpful discussions and processing the data from [1, 2] used in Figs. 9 and 10. The author would also like to thank the anonymous reviewers for their helpful comments to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gribov .

Editor information

Editors and Affiliations

Appendix: Lower Bounds for an Optimal Solution

Appendix: Lower Bounds for an Optimal Solution

Following the approach described in [11, Sect. 4]

$$\begin{aligned} \begin{aligned}&\min _ { \begin{aligned} k_1 \le k' \wedge k' \le k_2\\ 0 \le j' \wedge j'< N_{k'}\\ {{\mathrm{check}}}{ \left( \left( k', j' \right) , \left( k, j \right) \right) } \end{aligned} } { \left( \left\{ \begin{aligned}&T_{k', j'}^{\#} + 1\\&T_{k', j'}^{\epsilon } + \epsilon _ { \left( k', j' \right) , \left( k, j \right) } \end{aligned} \right\} \right) } \gtrapprox \\ \gtrapprox&\min _ { \begin{aligned} k_1 \le k' \wedge k' \le k_2\\ 0 \le j' \wedge j' < N_{k'} \end{aligned} } { \left( \left\{ \begin{aligned}&T_{k', j'}^{\#} + 1\\&T_{k', j'}^{\epsilon } + \epsilon _ { \left( k', j' \right) , \left( k, j \right) } ^ { \left( k_2 \right) } \end{aligned} \right\} \right) } , \end{aligned} \end{aligned}$$
(4)

where .

From (4), it follows that

$$\begin{aligned} \min _ { \begin{aligned} k_1 \le k' \wedge k' \le k_2\\ 0 \le j' \wedge j' < N_{k'}\\ {{\mathrm{check}}}{ \left( \left( k', j' \right) , \left( k, j \right) \right) } \end{aligned} } { \left( \left\{ \begin{aligned}&T_{k', j'}^{\#} + 1\\&T_{k', j'}^{\epsilon } + \epsilon _ { \left( k', j' \right) , \left( k, j \right) } \end{aligned} \right\} \right) } \gtrapprox \end{aligned}$$
$$\begin{aligned} \gtrapprox \min _ { \begin{aligned} 0 \le j_2 \wedge j_2 < N_{k_2}\\ {{\mathrm{check}}}{ \left( \left( k_2, j_2 \right) , \left( k, j \right) \right) } \end{aligned} } { \left( \left\{ \begin{aligned}&T_{k_2, j_2}^{\#}\\&T_{k_2, j_2}^{\epsilon } + \epsilon _ { \left( k_2, j_2 \right) , \left( k, j \right) } \end{aligned} \right\} \right) } \end{aligned}$$
(5)

and

$$\begin{aligned} \gtrapprox \min _ { 0 \le j_1 \wedge j_1< N_{k_1} } { \left( \left\{ \begin{aligned}&T_{k_1, j_1}^{\#}\\&T_{k_1, j_1}^{\epsilon } \end{aligned} \right\} \right) } + \left\{ \begin{aligned}&\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, 1\\&\min _ { \begin{aligned} 0 \le j_2 \wedge j_2 < N_{k_2}\\ {{\mathrm{check}}}{ \left( \left( k_2, j_2 \right) , \left( k, j \right) \right) } \end{aligned} } { \left( \epsilon _ { \left( k_2, j_2 \right) , \left( k, j \right) } \right) } \end{aligned} \right\} . \end{aligned}$$
(6)

The inequalities (5) and (6) are approximate due to the use of considered locations. However, this allows finding stricter limitations for the solution inside the interval and simultaneously finding the solution for breaking at vertex \(k_2\).

It is possible to construct (5) and (6) with exact inequalities by constructing the optimal solution when the endpoint is not required to end in the considered location. Similarly, the part from vertex \(k_2\) to \(\left( k, j \right) \) should not be required to end in the considered locations for vertex \(k_2\).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gribov, A. (2018). Searching for a Compressed Polyline with a Minimum Number of Vertices (Discrete Solution). In: Fornés, A., Lamiroy, B. (eds) Graphics Recognition. Current Trends and Evolutions. GREC 2017. Lecture Notes in Computer Science(), vol 11009. Springer, Cham. https://doi.org/10.1007/978-3-030-02284-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02284-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02283-9

  • Online ISBN: 978-3-030-02284-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics