Skip to main content

Scalability of the NV-tree: Three Experiments

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11223))

Included in the following conference series:

Abstract

The NV-tree is a scalable approximate high-dimensional indexing method specifically designed for large-scale visual instance search. In this paper, we report on three experiments designed to evaluate the performance of the NV-tree. Two of these experiments embed standard benchmarks within collections of up to 28.5 billion features, representing the largest single-server collection ever reported in the literature. The results show that indeed the NV-tree performs very well for visual instance search applications over large-scale collections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amsaleg, L.: A database perspective on large scale high-dimensional indexing. Habilitation à diriger des recherches, Université de Rennes 1 (2014)

    Google Scholar 

  2. Babenko, A., Lempitsky, V.S.: The inverted multi-index. In: Proceedings of the CVPR, Providence, RI, USA (2012)

    Google Scholar 

  3. Babenko, A., Lempitsky, V.S.: The inverted multi-index. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1247–1260 (2015)

    Article  Google Scholar 

  4. Babenko, A., Lempitsky, V.S.: Efficient indexing of billion-scale datasets of deep descriptors. In: Proceedings of the CVPR, Las Vegas, NV, USA (2016)

    Google Scholar 

  5. Douze, M., Jégou, H., Sandhawalia, H., Amsaleg, L., Schmid, C.: Evaluation of gist descriptors for web-scale image search. In: Proceedings of the CIVR, Santorini, Greece (2009)

    Google Scholar 

  6. Guðmundsson, G.Þ., Amsaleg, L., Jónsson, B.Þ., Franklin, M.J.: Towards engineering a web-scale multimedia service: a case study using Spark. In: Proceedings of the MMSys, Taipei, Taiwan (2017)

    Google Scholar 

  7. Jégou, H., Tavenard, R., Douze, M., Amsaleg, L.: Searching in one billion vectors: re-rank with source coding. In: Proceedings of the ICASSP, Prague, Czech Republic (2011)

    Google Scholar 

  8. Lejsek, H., Ásmundsson, F.H., Jónsson, B.Þ., Amsaleg, L.: NV-Tree: an efficient disk-based index for approximate search in very large high-dimensional collections. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 869–883 (2009)

    Article  Google Scholar 

  9. Lejsek, H., Jónsson, B.Þ., Amsaleg, L.: NV-Tree: nearest neighbours at the billion scale. In: Proceedings of the ACM ICMR, Trento, Italy (2011)

    Google Scholar 

  10. Liu, T., Moore, A., Gray, A., Yang, K.: An investigation of practical approximate nearest neighbor algorithms. In: Proceedings of the NIPS, Vancouver, BC, Canada (2004)

    Google Scholar 

  11. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  MathSciNet  Google Scholar 

  12. Moise, D., Shestakov, D., Guðmundsson, G.Þ., Amsaleg, L.: Indexing and searching 100M images with map-reduce. In: Proceedings of the ACM ICMR, Dallas, TX, USA (2013)

    Google Scholar 

  13. Petitcolas, F.A.P., Steinebach, M., Raynal, F., Dittmann, J., Fontaine, C., Fates, N.: A public automated web-based evaluation service for watermarking schemes: StirMark benchmark. In: Proceedings of the Electronic Imaging, Security and Watermarking of Multimedia Contents III, San Jose, CA, USA (2001)

    Google Scholar 

  14. Sun, X., Wang, C., Xu, C., Zhang, L.: Indexing billions of images for sketch-based retrieval. In: Proceedings of the ACM Multimedia, Barcelona, Spain (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Amsaleg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amsaleg, L., Jónsson, B.Þ., Lejsek, H. (2018). Scalability of the NV-tree: Three Experiments. In: Marchand-Maillet, S., Silva, Y., Chávez, E. (eds) Similarity Search and Applications. SISAP 2018. Lecture Notes in Computer Science(), vol 11223. Springer, Cham. https://doi.org/10.1007/978-3-030-02224-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02224-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02223-5

  • Online ISBN: 978-3-030-02224-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics