Abstract
The NV-tree is a scalable approximate high-dimensional indexing method specifically designed for large-scale visual instance search. In this paper, we report on three experiments designed to evaluate the performance of the NV-tree. Two of these experiments embed standard benchmarks within collections of up to 28.5 billion features, representing the largest single-server collection ever reported in the literature. The results show that indeed the NV-tree performs very well for visual instance search applications over large-scale collections.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amsaleg, L.: A database perspective on large scale high-dimensional indexing. Habilitation à diriger des recherches, Université de Rennes 1 (2014)
Babenko, A., Lempitsky, V.S.: The inverted multi-index. In: Proceedings of the CVPR, Providence, RI, USA (2012)
Babenko, A., Lempitsky, V.S.: The inverted multi-index. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1247–1260 (2015)
Babenko, A., Lempitsky, V.S.: Efficient indexing of billion-scale datasets of deep descriptors. In: Proceedings of the CVPR, Las Vegas, NV, USA (2016)
Douze, M., Jégou, H., Sandhawalia, H., Amsaleg, L., Schmid, C.: Evaluation of gist descriptors for web-scale image search. In: Proceedings of the CIVR, Santorini, Greece (2009)
Guðmundsson, G.Þ., Amsaleg, L., Jónsson, B.Þ., Franklin, M.J.: Towards engineering a web-scale multimedia service: a case study using Spark. In: Proceedings of the MMSys, Taipei, Taiwan (2017)
Jégou, H., Tavenard, R., Douze, M., Amsaleg, L.: Searching in one billion vectors: re-rank with source coding. In: Proceedings of the ICASSP, Prague, Czech Republic (2011)
Lejsek, H., Ásmundsson, F.H., Jónsson, B.Þ., Amsaleg, L.: NV-Tree: an efficient disk-based index for approximate search in very large high-dimensional collections. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 869–883 (2009)
Lejsek, H., Jónsson, B.Þ., Amsaleg, L.: NV-Tree: nearest neighbours at the billion scale. In: Proceedings of the ACM ICMR, Trento, Italy (2011)
Liu, T., Moore, A., Gray, A., Yang, K.: An investigation of practical approximate nearest neighbor algorithms. In: Proceedings of the NIPS, Vancouver, BC, Canada (2004)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Moise, D., Shestakov, D., Guðmundsson, G.Þ., Amsaleg, L.: Indexing and searching 100M images with map-reduce. In: Proceedings of the ACM ICMR, Dallas, TX, USA (2013)
Petitcolas, F.A.P., Steinebach, M., Raynal, F., Dittmann, J., Fontaine, C., Fates, N.: A public automated web-based evaluation service for watermarking schemes: StirMark benchmark. In: Proceedings of the Electronic Imaging, Security and Watermarking of Multimedia Contents III, San Jose, CA, USA (2001)
Sun, X., Wang, C., Xu, C., Zhang, L.: Indexing billions of images for sketch-based retrieval. In: Proceedings of the ACM Multimedia, Barcelona, Spain (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Amsaleg, L., Jónsson, B.Þ., Lejsek, H. (2018). Scalability of the NV-tree: Three Experiments. In: Marchand-Maillet, S., Silva, Y., Chávez, E. (eds) Similarity Search and Applications. SISAP 2018. Lecture Notes in Computer Science(), vol 11223. Springer, Cham. https://doi.org/10.1007/978-3-030-02224-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-02224-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-02223-5
Online ISBN: 978-3-030-02224-2
eBook Packages: Computer ScienceComputer Science (R0)