Skip to main content

Scalability of the NV-tree: Three Experiments

Part of the Lecture Notes in Computer Science book series (LNISA,volume 11223)

Abstract

The NV-tree is a scalable approximate high-dimensional indexing method specifically designed for large-scale visual instance search. In this paper, we report on three experiments designed to evaluate the performance of the NV-tree. Two of these experiments embed standard benchmarks within collections of up to 28.5 billion features, representing the largest single-server collection ever reported in the literature. The results show that indeed the NV-tree performs very well for visual instance search applications over large-scale collections.

Keywords

  • High-dimensional Indexing
  • Instance Search
  • Query Feature
  • Leaf Group
  • SIFT Features

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-02224-2_5
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-02224-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Amsaleg, L.: A database perspective on large scale high-dimensional indexing. Habilitation à diriger des recherches, Université de Rennes 1 (2014)

    Google Scholar 

  2. Babenko, A., Lempitsky, V.S.: The inverted multi-index. In: Proceedings of the CVPR, Providence, RI, USA (2012)

    Google Scholar 

  3. Babenko, A., Lempitsky, V.S.: The inverted multi-index. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1247–1260 (2015)

    CrossRef  Google Scholar 

  4. Babenko, A., Lempitsky, V.S.: Efficient indexing of billion-scale datasets of deep descriptors. In: Proceedings of the CVPR, Las Vegas, NV, USA (2016)

    Google Scholar 

  5. Douze, M., Jégou, H., Sandhawalia, H., Amsaleg, L., Schmid, C.: Evaluation of gist descriptors for web-scale image search. In: Proceedings of the CIVR, Santorini, Greece (2009)

    Google Scholar 

  6. Guðmundsson, G.Þ., Amsaleg, L., Jónsson, B.Þ., Franklin, M.J.: Towards engineering a web-scale multimedia service: a case study using Spark. In: Proceedings of the MMSys, Taipei, Taiwan (2017)

    Google Scholar 

  7. Jégou, H., Tavenard, R., Douze, M., Amsaleg, L.: Searching in one billion vectors: re-rank with source coding. In: Proceedings of the ICASSP, Prague, Czech Republic (2011)

    Google Scholar 

  8. Lejsek, H., Ásmundsson, F.H., Jónsson, B.Þ., Amsaleg, L.: NV-Tree: an efficient disk-based index for approximate search in very large high-dimensional collections. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 869–883 (2009)

    CrossRef  Google Scholar 

  9. Lejsek, H., Jónsson, B.Þ., Amsaleg, L.: NV-Tree: nearest neighbours at the billion scale. In: Proceedings of the ACM ICMR, Trento, Italy (2011)

    Google Scholar 

  10. Liu, T., Moore, A., Gray, A., Yang, K.: An investigation of practical approximate nearest neighbor algorithms. In: Proceedings of the NIPS, Vancouver, BC, Canada (2004)

    Google Scholar 

  11. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    CrossRef  MathSciNet  Google Scholar 

  12. Moise, D., Shestakov, D., Guðmundsson, G.Þ., Amsaleg, L.: Indexing and searching 100M images with map-reduce. In: Proceedings of the ACM ICMR, Dallas, TX, USA (2013)

    Google Scholar 

  13. Petitcolas, F.A.P., Steinebach, M., Raynal, F., Dittmann, J., Fontaine, C., Fates, N.: A public automated web-based evaluation service for watermarking schemes: StirMark benchmark. In: Proceedings of the Electronic Imaging, Security and Watermarking of Multimedia Contents III, San Jose, CA, USA (2001)

    Google Scholar 

  14. Sun, X., Wang, C., Xu, C., Zhang, L.: Indexing billions of images for sketch-based retrieval. In: Proceedings of the ACM Multimedia, Barcelona, Spain (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Amsaleg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Amsaleg, L., Jónsson, B.Þ., Lejsek, H. (2018). Scalability of the NV-tree: Three Experiments. In: Marchand-Maillet, S., Silva, Y., Chávez, E. (eds) Similarity Search and Applications. SISAP 2018. Lecture Notes in Computer Science(), vol 11223. Springer, Cham. https://doi.org/10.1007/978-3-030-02224-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02224-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02223-5

  • Online ISBN: 978-3-030-02224-2

  • eBook Packages: Computer ScienceComputer Science (R0)