LID-Fingerprint: A Local Intrinsic Dimensionality-Based Fingerprinting Method

  • Michael E. Houle
  • Vincent Oria
  • Kurt R. Rohloff
  • Arwa M. WaliEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11223)


One of the most important information hiding techniques is fingerprinting, which aims to generate new representations for data that are significantly more compact than the original. Fingerprinting is a promising technique for secure and efficient similarity search for multimedia data on the cloud. In this paper, we propose LID-Fingerprint, a simple binary fingerprinting technique for high-dimensional data. The binary fingerprints are derived from sparse representations of the data objects, which are generated using a feature selection criterion, Support-Weighted Intrinsic Dimensionality (support-weighted ID), within a similarity graph construction method, NNWID-Descent. The sparsification process employed by LID-Fingerprint significantly reduces the information content of the data, thus ensuring data suppression and data masking. Experimental results show that LID-Fingerprint is able to generate compact binary fingerprints while allowing a reasonable level of search accuracy.


Intrinsic dimensionality K-nearest neighbor graph Fingerprinting Information hiding 



M. E. Houle acknowledges the financial support of JSPS Kakenhi Kiban (B) Research Grant 18H03296, and V. Oria acknowledges the financial support of NSF Research Grants DGE 1565478 and AGS 1743321.


  1. 1.
    Amsaleg, L., Chelly, O., Furon, T., Girard, S., Houle, M.E., Kawarabayashi, K., Nett, M.: Estimating local intrinsic dimensionality. In: ACM SIGKDD, pp. 29–38 (2015)Google Scholar
  2. 2.
    Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: FOCS, pp. 459–468. IEEE (2006)Google Scholar
  3. 3.
    Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory 44(5), 1897–1905 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Broder, A.Z.: On the resemblance and containment of documents. In: SEQUENCES, pp. 21–29. IEEE (1997)Google Scholar
  5. 5.
    Caballero, J., Venkataraman, S., Poosankam, P., Kang, M.G., Song, D., Blum, A.: FiG: automatic fingerprint generation. In: NDSS Symposium (2007)Google Scholar
  6. 6.
    Cano, P., Batlle, E., Kalker, T., Haitsma, J.: A review of audio fingerprinting. J. VLSI Sig. Process. Syst. 41(3), 271–284 (2005)CrossRefGoogle Scholar
  7. 7.
    Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: ACM STOC, pp. 380–388 (2002)Google Scholar
  8. 8.
    Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco (2008)Google Scholar
  9. 9.
    Dong, W., Moses, C., Li, K.: Efficient K-nearest neighbor graph construction for generic similarity measures. In: WWW, pp. 577–586 (2011)Google Scholar
  10. 10.
    Farooq, F., Bolle, R.M., Jea, T.Y., Ratha, N.: Anonymous and revocable fingerprint recognition. In: IEEE CVPR, pp. 1–7 (2007)Google Scholar
  11. 11.
    Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: IEEE CVPR, vol. 2, pp. 524–531, June 2005Google Scholar
  12. 12.
    Fernandes, K., Vinagre, P., Cortez, P.: A proactive intelligent decision support system for predicting the popularity of online news. In: Pereira, F., Machado, P., Costa, E., Cardoso, A. (eds.) EPIA 2015. LNCS (LNAI), vol. 9273, pp. 535–546. Springer, Cham (2015). Scholar
  13. 13.
    Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library of object images. IJCV 61(1), 103–112 (2005)CrossRefGoogle Scholar
  14. 14.
    Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. VLDB 99, 518–529 (1999)Google Scholar
  15. 15.
    Gong, Y., Lazebnik, S.: Iterative quantization: a procrustean approach to learning binary codes. In: IEEE CVPR, pp. 817–824 (2011)Google Scholar
  16. 16.
    Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent systems. J. Comput. Secur. 13(3), 483–514 (2005)CrossRefGoogle Scholar
  17. 17.
    Houle, M.E.: Local intrinsic dimensionality I: an extreme-value-theoretic foundation for similarity applications. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds.) SISAP 2017. LNCS, vol. 10609, pp. 64–79. Springer, Cham (2017). Scholar
  18. 18.
    Houle, M.E., Oria, V., Wali, A.M.: Improving \(k\)-NN graph accuracy using local intrinsic dimensionality. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds.) SISAP 2017. LNCS, vol. 10609. Springer, Cham (2017). Scholar
  19. 19.
    Houle, M.E.: Dimensionality, discriminability, density and distance distributions. In: IEEE ICDMW, pp. 468–473 (2013)Google Scholar
  20. 20.
    Houle, M.E.: Local intrinsic dimensionality II: multivariate analysis and distributional support. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds.) SISAP 201. LNCS, vol. 10609. Springer, Cham (2017). Scholar
  21. 21.
    Houle, M.E., Ma, X., Oria, V., Sun, J.: Improving the quality of K-NN graphs through vector sparsification: application to image databases. IJMIR 3(4), 259–274 (2014)Google Scholar
  22. 22.
    Ji, J., Li, J., Yan, S., Zhang, B., Tian, Q.: Super-bit locality-sensitive hashing. In: NIPS, pp. 108–116 (2012)Google Scholar
  23. 23.
    Katzenbeisser, S., Petitcolas, F.: Information Hiding. Artech House (2016)Google Scholar
  24. 24.
    Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10), 613–615 (1973)CrossRefGoogle Scholar
  25. 25.
    Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  26. 26.
    Lichman, M.: UCI Machine Learning Repository (2013).
  27. 27.
    Mason, L., Baxter, J., Bartlett, P.L., Frean, M.R.: Boosting algorithms as gradient descent. In: NIPS, pp. 512–518 (2000)Google Scholar
  28. 28.
    Moravec, K., Cox, I.J.: A comparison of extended fingerprint hashing and locality sensitive hashing for binary audio fingerprints. In: ACM ICMR, p. 31 (2011)Google Scholar
  29. 29.
    Petitcolas, F.A., Anderson, R.J., Kuhn, M.G.: Information hiding-a survey. Proc. IEEE 87(7), 1062–1078 (1999)CrossRefGoogle Scholar
  30. 30.
    Raginsky, M., Lazebnik, S.: Locality-sensitive binary codes from shift-invariant kernels. In: NIPS, pp. 1509–1517 (2009)Google Scholar
  31. 31.
    Salakhutdinov, R., Hinton, G.: Semantic hashing. RBM 500(3), 500 (2007)Google Scholar
  32. 32.
    Shakhnarovich, G., Viola, P., Darrell, T.: Fast pose estimation with parameter-sensitive hashing. In: IEEE ICCV, p. 750 (2003)Google Scholar
  33. 33.
    Strecha, C., Bronstein, A., Bronstein, M., Fua, P.: LDAhash: improved matching with smaller descriptors. TPAMI 34(1), 66–78 (2012)CrossRefGoogle Scholar
  34. 34.
    Torralba, A., Fergus, R., Weiss, Y.: Small codes and large image databases for recognition (2008)Google Scholar
  35. 35.
    Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS, pp. 1753–1760 (2009)Google Scholar
  36. 36.
    Xu, H., Veldhuis, R.N.: Binary representations of fingerprint spectral minutiae features. In: IEEE ICPR, pp. 1212–1216 (2010)Google Scholar
  37. 37.
    Xu, H., Veldhuis, R.N., Kevenaar, T.A., Akkermans, T.A.: A fast minutiae-based fingerprint recognition system. IEEE Syst. J. 3(4), 418–427 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Michael E. Houle
    • 1
  • Vincent Oria
    • 2
  • Kurt R. Rohloff
    • 2
  • Arwa M. Wali
    • 2
    • 3
    Email author
  1. 1.National Institute of InformaticsTokyoJapan
  2. 2.New Jersey Institute of TechnologyNewarkUSA
  3. 3.King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations