Skip to main content

Estimation of a Normal Mean Vector II

  • Chapter
  • First Online:
Shrinkage Estimation

Abstract

As we saw in Chap. 2, the frequentist paradigm is well suited for risk evaluations, but is less useful for estimator construction. It turns out that the Bayesian approach is complementary, as it is well suited for the construction of possibly optimal estimators. In this chapter we take a Bayesian view of minimax shrinkage estimation. In Sect. 3.1 we derive a general sufficient condition for minimaxity of Bayes and generalized Bayes estimators in the known variance case, we also illustrate the theory with numerous examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitchison J (1975) Goodness of prediction fit. Biometrika 62:547–554

    Article  MathSciNet  MATH  Google Scholar 

  • Alam K (1973) A family of admissible minimax estimators of the mean of a multivariate normal distribution. Ann Stat 1:517–525

    Article  MathSciNet  MATH  Google Scholar 

  • Baranchik A (1970) A family of minimax estimators of the mean of a multivariate normal distribution. Ann Math Stat 41:642–645

    Article  MathSciNet  Google Scholar 

  • Berger JO (1976) Inadmissibility results for the best invariant estimator of two coordinates of a location vector. Ann Stat 4(6):1065–1076

    Article  MathSciNet  MATH  Google Scholar 

  • Berger JO (1985a) Statistical decision theory and Bayesian analysis, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Berger JO, Srinivasan C (1978) Generalized Bayes estimators in multivariate problems. Ann Stat 6(4):783–801

    Article  MathSciNet  MATH  Google Scholar 

  • Berger JO, Strawderman WE (1996) Choice of hierarchical priors. Admissibility in estimation of normal means. Ann Stat 24:931–951

    Article  MathSciNet  MATH  Google Scholar 

  • Boisbunon A, Maruyama Y (2014) Inadmissibility of the best equivariant predictive density in the unknown variance case. Biometrika 101(3):733–740

    Article  MathSciNet  MATH  Google Scholar 

  • Brown LD (1971) Admissible estimators, recurrent diffusions, and insoluble boundary value problems. Ann Math Stat 42:855–903

    Article  MathSciNet  MATH  Google Scholar 

  • Brown LD, George I, Xu X (2008) Admissible predictive density estimation. Ann Stat 36:1156–1170

    Article  MathSciNet  MATH  Google Scholar 

  • Carvalho C, Polson N, Scott J (2010) The horseshoe estimator for sparse signals. Biometrika 97:465–480

    Article  MathSciNet  MATH  Google Scholar 

  • Casella G, Strawderman WE (1981) Estimating a bounded normal mean. Ann Stat 9:870–878

    Article  MathSciNet  MATH  Google Scholar 

  • Doob JL (1984) Classical potential theory and its probabilistic counterpart. Springer, Berlin/Heidelberg/New York

    Book  MATH  Google Scholar 

  • Efron B, Morris C (1976) Families of minimax estimators of the mean of a multivariate normal distribution. Ann Stat 4(1):11–21

    Article  MathSciNet  MATH  Google Scholar 

  • Faith RE (1978) Minimax Bayes point estimators of a multivariate normal mean. J Multivar Anal 8:372–379

    Article  MATH  Google Scholar 

  • Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96:1348–1360

    Article  MathSciNet  MATH  Google Scholar 

  • Fourdrinier D, Strawderman, Wells MT (1998) On the construction of Bayes minimax estimators. Ann Stat 26:660–671

    Article  MathSciNet  MATH  Google Scholar 

  • Fourdrinier D, Marchand E, Righi A, Strawderman WE (2011) On improved predictive density estimation with parametric constraints. Electron J Stat 5:172–191

    Article  MathSciNet  MATH  Google Scholar 

  • George EI (1986a) A formal Bayes multiple shrinkage estimator. Commun Stat Theory Methods 15(7):2099–2114

    Article  MathSciNet  MATH  Google Scholar 

  • George EI (1986b) Minimax multiple shrinkage estimation. Ann Stat 14(1):188–205

    Article  MathSciNet  MATH  Google Scholar 

  • George EI, Xu X (2010) Bayesian predictive density estimation. In: Chen M-H, Müller P, Sun D, Ye K, Dey DK (eds) Frontiers of statistical decision making and Bayesian analysis in honor of James O Berger. Springer, New York, pp 83–95

    Google Scholar 

  • George EI, Feng L, Xu X (2006) Improved minimax predictive densities under Kullback-Leibler loss. Ann Stat 34:78–91

    Article  MathSciNet  MATH  Google Scholar 

  • Gomez-Sanchez-Manzano E, Gomez-Villegas M, Marin J (2008) Multivariate exponential power distributions as mixtures of normal distributions with Bayesian applications. Commun Stat Theory Methods 37:972–985

    Article  MATH  Google Scholar 

  • Griffin JE, Brown PJ (2010) Inference with normal-gamma prior distributions in regression problems. Bayesian Anal 5(1):171–188. https://doi.org/10.1214/10-BA507

    Article  MathSciNet  MATH  Google Scholar 

  • Johnstone IM, Silverman BW (2004) Needles and straw in haystacks: empirical Bayes estimates of possibly sparse sequences. Ann Stat 32(4):1594–1649

    Article  MathSciNet  MATH  Google Scholar 

  • Ki F, Tsui KW (1990) Multiple-shrinkage estimators of means in exponential families. Can J Stat/La Revue Canadienne de Statistique 18:31–46

    Article  MathSciNet  MATH  Google Scholar 

  • Komaki F (2001) A shrinkage predictive distribution for multivariate normal observables. Biometrika 88:859–864

    Article  MathSciNet  MATH  Google Scholar 

  • Kubokawa T, Strawderman WE (2007) On minimaxity and admissibility of hierarchical Bayes estimators. J Multivar Anal 98(4):829–851

    Article  MathSciNet  MATH  Google Scholar 

  • Kubokawa T, Marchand E, Strawderman WE (2015) On predictive density estimation for location families under integrated squared error loss. J Multivar Anal 142:57–74

    Article  MathSciNet  MATH  Google Scholar 

  • Kubokawa T, Marchand E, Strawderman WE (2017) On predictive density estimation for location families under integrated absolute error loss. Bernoulli 23(4B):3197–3212

    Article  MathSciNet  MATH  Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86

    Article  MathSciNet  MATH  Google Scholar 

  • Lehmann EL, Casella G (1998) Theory of point estimation, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Liang F, Barron A (2004) Exact minimax strategies for predictive density estimation, data compression and model selection. IEEE Trans Inf Theory 50:2708–2726

    Article  MathSciNet  MATH  Google Scholar 

  • Marchand É, Perron F (2001) Improving on the MLE of a bounded normal mean. Ann Stat 29(4):1078–1093

    Article  MathSciNet  MATH  Google Scholar 

  • Maruyama Y (1998) A unified and broadened class of admissible minimax estimators of a multivariate normal mean. J Multivar Anal 64:196–205

    Article  MathSciNet  MATH  Google Scholar 

  • Maruyama Y, Strawderman WE (2005) A new class of generalized Bayes minimax ridge regression estimators. Ann Stat 33:1753–1770

    Article  MathSciNet  MATH  Google Scholar 

  • Maruyama Y, Strawderman WE (2012) Bayesian predictive densities for linear regression models under α-divergence loss: some results and open problems. In: Fourdrinier D, Marchand E, Rukhin AL (eds) Contemporary developments in Bayesian analysis and statistical decision theory: a Festschrift for William E. Strawderman, vol 8. Institute of Mathematical Statistics, Beachwood, pp 42–56

    Google Scholar 

  • Muirhead RJ (1982) Aspects of multivariate statistics. Wiley, New York

    Book  MATH  Google Scholar 

  • Murray GD (1977) A note on the estimation of probability density functions. Biometrika 64:150–152

    Article  MathSciNet  MATH  Google Scholar 

  • Ng VM (1980) On the estimation of parametric density functions. Biometrika 67:505–506

    Article  MathSciNet  MATH  Google Scholar 

  • Robert CP (1994) The Bayesian choice: a decision theoretic motivation. Springer, New York

    Book  MATH  Google Scholar 

  • Sacks J (1963) Generalized Bayes solutions in estimation problems. Ann Math Stat 34:751–768

    Article  MathSciNet  MATH  Google Scholar 

  • Stein C (1973) Estimation of the mean of a multivariate normal distribution. In: Proceedings of Prague symposium asymptotic statistics, pp 345–381

    Google Scholar 

  • Stein C (1981) Estimation of the mean of multivariate normal distribution. Ann Stat 9:1135–1151

    Article  MathSciNet  MATH  Google Scholar 

  • Strawderman WE (1971) Proper Bayes minimax estimators of the multivariate normal mean. Ann Math Stat 42:385–388

    Article  MathSciNet  MATH  Google Scholar 

  • Strawderman WE (1973) Proper Bayes minimax estimators of the multivariate normal mean vector for the case of common unknown variances. Ann Stat 1:1189–1194

    Article  MathSciNet  MATH  Google Scholar 

  • Strawderman WE (2003) On minimax estimation of a normal mean vector for general quadratic loss. In: Moore M, Froda S, Leger C (eds) Mathematical statistics and applications: Festschrift for constance van Eeden. Lecture notes–monograph series, vol 42. Institute of Mathematical Statistics, Beachwood, pp 3–14

    Google Scholar 

  • Strawderman RL, Wells MT (2012) On hierarchical prior specifications and penalized likelihood. In: Fourdrinier D, Marchand E, Rukhin AL (eds) Contemporary developments in Bayesian analysis and statistical decision theory: a Festschrift for William E. Strawderman, collections, vol 8. Institute of Mathematical Statistics, Beachwood, pp 154–180

    Google Scholar 

  • Strawderman RL, Wells MT, Schifano ED (2013) Hierarchical Bayes, maximum a posteriori estimators, and minimax concave penalized likelihood estimation. Electron J Stat 7:973–990

    Article  MathSciNet  MATH  Google Scholar 

  • Takada Y (1979) Stein’s positive part estimator and Bayes estimator. Ann Inst Stat Math 31:177–183

    Article  MathSciNet  MATH  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the LASSO. J R Stat Soc Ser B 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  • Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005) Sparsity and smoothness via the fused LASSO. J R Stat Soc Ser B 67(1):91–108

    Article  MathSciNet  MATH  Google Scholar 

  • Wells MT, Zhou G (2008) Generalized Bayes minimax estimators of the mean of multivariate normal distribution with unknown variance. J Multivar Anal 99:2208–2220

    Article  MathSciNet  MATH  Google Scholar 

  • Widder DV (1946) The Laplace transform. Princeton University Press, Princeton

    Google Scholar 

  • Wither C (1991) A class of multiple shrinkage estimators. Ann Inst Stat Math 43:147–156

    Article  MathSciNet  Google Scholar 

  • Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B 68(1):49–67

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang CH (2010) Nearly unbiased variable selection under minimax concave penalty. Ann Stat 38:894–942

    Article  MathSciNet  MATH  Google Scholar 

  • Zinodiny S, Strawderman WE, Parsian A (2011) Bayes minimax estimation of the multivariate normal mean vector for the of common unknown variance. J Multivar Anal 102(9):1256–1262

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fourdrinier, D., Strawderman, W.E., Wells, M.T. (2018). Estimation of a Normal Mean Vector II. In: Shrinkage Estimation. Springer Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-02185-6_3

Download citation

Publish with us

Policies and ethics