Distances, Norms and Error Propagation in Idempotent Semirings

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11194)


Error propagation and perturbation theory are well-investigated areas of mathematics dealing with the influence of errors and perturbations of input quantities on output quantities. However, these methods are restricted to quantities relying on real numbers under traditional addition and multiplication. We aim to present first steps of an analogous theory on idempotent semirings, so we define distances and norms on idempotent semirings and matrices over them. These concepts are used to derive inequalities characterizing the influence of changes in the input quantities on the output quantities of some often used semiring expressions.



The author is grateful to the anonymous referees for helpful and enlightening remarks, especially to the fourth reviewer for his deep reflections about doing and selling science.

Supplementary material


  1. 1.
    Armstrong, A., Struth, G., Weber, T.: Program analysis and verification based on Kleene Algebra in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 197–212. Springer, Heidelberg (2013). Scholar
  2. 2.
    Avrachenkov, K., Filar, J.A., Howlett, P.G.: Analytic Perturbation Theory and Its Applications. SIAM (2013)Google Scholar
  3. 3.
    Backhouse, R.C.: Regular algebra applied to language problems. J. Log. Algebr. Program. 66(2), 71–111 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berghammer, R., Stucke, I., Winter, M.: Using relation-algebraic means and tool support for investigating and computing bipartitions. J. Log. Algebr. Meth. Program. 90, 102–124 (2017)CrossRefGoogle Scholar
  5. 5.
    Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society (1967)Google Scholar
  6. 6.
    Brunet, P., Pous, D., Stucke, I.: Cardinalities of finite relations in Coq. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 466–474. Springer, Cham (2016). Scholar
  7. 7.
    Courant, R., John, F.: Introduction to Calculus and Analysis I, 1st edn. Springer, Heidelberg (1999). Scholar
  8. 8.
    Ésik, Z., Fahrenberg, U., Legay, A., Quaas, K.: Kleene algebras and semimodules for energy problems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 102–117. Springer, Cham (2013). Scholar
  9. 9.
    Ghose, A., Harvey, P.: Metric SCSPs: partial constraint satisfaction via semiring CSPs augmented with metrics. In: McKay, B., Slaney, J. (eds.) AI 2002. LNCS (LNAI), vol. 2557, pp. 443–454. Springer, Heidelberg (2002). Scholar
  10. 10.
    Glück, R.: Algebraic investigation of connected components. In: Höfner, P., Pous, D., Struth, G. (eds.) RAMICS 2017. LNCS, vol. 10226, pp. 109–126. Springer, Cham (2017). Scholar
  11. 11.
    Glück, R., Krebs, F.B.: Towards interactive verification of programmable logic controllers using Modal Kleene Algebra and KIV. In: Kahl, W., Winter, M., Oliveira, J.N. (eds.) RAMICS 2015. LNCS, vol. 9348, pp. 241–256. Springer, Cham (2015). Scholar
  12. 12.
    Golan, J.S.: Semirings and their Applications, 1st edn. Springer, Dordrecht (1999). Scholar
  13. 13.
    Gondran, M., Minoux, M.: Graphs, Dioids and Semirings. Springer, New York (2008). Scholar
  14. 14.
    Guttmann, W.: Stone relation algebras. In: Höfner, P., Pous, D., Struth, G. (eds.) RAMICS 2017. LNCS, vol. 10226, pp. 127–143. Springer, Cham (2017). Scholar
  15. 15.
    Holmes, M.: Introduction to Perturbation Methods, 2nd edn. Springer, New York (2013). Scholar
  16. 16.
    Jackson, M., McKenzie, R.: Interpreting graph colorability in finite semigroups. IJAC 16(1), 119–140 (2006)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Jipsen, P., Rose, H.: Varieties of Lattices, 1st edn. Springer, Heidelberg (1992). Scholar
  18. 18.
    Kahl, W.: Graph transformation with symbolic attributes via monadic coalgebra homomorphisms. In: ECEASST, p. 71 (2014)Google Scholar
  19. 19.
    Kawahara, Y., Furusawa, H.: An algebraic formalization of fuzzy relations. Fuzzy Sets Syst. 101(1), 125–135 (1999)CrossRefGoogle Scholar
  20. 20.
    Kawahara, Y.: On the cardinality of relations. In: RelMiCS, pp. 251–265 (2006)Google Scholar
  21. 21.
    Krivulin, N.: Complete solution of an optimization problem in tropical semifield. In: Höfner, P., Pous, D., Struth, G. (eds.) RAMICS 2017. LNCS, vol. 10226, pp. 226–241. Springer, Cham (2017). Scholar
  22. 22.
    Litak, T., Mikulás, S., Hidders, J.: Relational lattices. In: Höfner, P., Jipsen, P., Kahl, W., Müller, M.E. (eds.) RAMICS 2014. LNCS, vol. 8428, pp. 327–343. Springer, Cham (2014). Scholar
  23. 23.
    Michels, G., Joosten, S., van der Woude, J., Joosten, S.: Ampersand - applying relation algebra in practice. In: de Swart, H. (ed.) RAMICS 2011. LNCS, vol. 6663, pp. 280–293. Springer, Heidelberg (2011). Scholar
  24. 24.
    Oliveira, J.N.: A relation-algebraic approach to the “hoare logic” of functional dependencies. J. Log. Algebr. Meth. Program. 83(2), 249–262 (2014)CrossRefGoogle Scholar
  25. 25.
    Schmidt, G., Ströhlein, T.: Relations and Graphs: Discrete Mathematics for Computer Scientists. Springer, Heidelberg (1993). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Deutsches Zentrum für Luft- und RaumfahrtAugsburgGermany

Personalised recommendations