Advertisement

Algebraic Solution of Weighted Minimax Single-Facility Constrained Location Problems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11194)

Abstract

We consider location problems to find the optimal sites of placement of a new facility, which minimize the maximum weighted Chebyshev or rectilinear distance to existing facilities under constraints on the feasible location domain. We examine a Chebyshev location problem in multidimensional space to represent and solve the problem in the framework of tropical (idempotent) algebra, which deals with the theory and applications of semirings and semifields with idempotent addition. The solution approach involves formulating the problem as a tropical optimization problem, introducing a parameter that represents the minimum value in the problem, and reducing the problem to a system of parametrized inequalities. The necessary and sufficient conditions for the existence of a solution to the system serve to evaluate the minimum, whereas all corresponding solutions of the system present a complete solution of the optimization problem. With this approach, we obtain a direct, exact solution represented in a compact closed form, which is appropriate for further analysis and straightforward computations with polynomial time complexity. The solution of the Chebyshev problem is then used to solve a location problem with rectilinear distance in the two-dimensional plane. The obtained solutions extend previous results on the Chebyshev and rectilinear location problems without weights.

Keywords

Tropical mathematics Idempotent semifield Constrained optimization problem Single-facility location problem 

References

  1. 1.
    Brandeau, M.L., Chiu, S.S.: An overview of representative problems in location research. Manage. Sci. 35(6), 645–674 (1989).  https://doi.org/10.1287/mnsc.35.6.645MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brimberg, J., Wesolowsky, G.O.: Optimizing facility location with Euclidean and rectilinear distances. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of optimization, pp. 2869–2873. Springer, Boston (2009).  https://doi.org/10.1007/978-0-387-74759-0_491
  3. 3.
    Chhajed, D., Francis, R.L., Lowe, T.J.: Facility location. In: Gass, S.I., Fu, M.C. (eds.) Encyclopedia of Operations Research and Management Science, pp. 546–549. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-1-4419-1153-7_327CrossRefGoogle Scholar
  4. 4.
    Cuninghame-Green, R.A.: Minimax algebra and applications. Fuzzy Sets Syst. 41(3), 251–267 (1991).  https://doi.org/10.1016/0165-0114(91)90130-IMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cuninghame-Green, R.A.: Minimax algebra and applications. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, Advances in Imaging and Electron Physics, vol. 90, pp. 1–121. Academic Press, San Diego (1994).  https://doi.org/10.1016/S1076-5670(08)70083-1Google Scholar
  6. 6.
    Dearing, P.M.: On some minimax location problems using rectilinear distance. Ph.D. thesis, University of Florida, Gainesville, FL (1972)Google Scholar
  7. 7.
    Eiselt, H.A., Marianov, V. (eds.): Foundations of Location Analysis. International Series in Operations Research and Management Science, vol. 155. Springer, New York (2011).  https://doi.org/10.1007/978-1-4419-7572-0zbMATHGoogle Scholar
  8. 8.
    Elzinga, J., Hearn, D.W.: Geometrical solutions for some minimax location problems. Transport. Sci. 6(4), 379–394 (1972).  https://doi.org/10.1287/trsc.6.4.379MathSciNetCrossRefGoogle Scholar
  9. 9.
    Farahani, R.Z., Hekmatfar, M. (eds.): Facility Location. Contributions to Management Science. Physica-Verlag, Heidelberg (2009).  https://doi.org/10.1007/978-3-7908-2151-2zbMATHGoogle Scholar
  10. 10.
    Francis, R.L.: A geometrical solution procedure for a rectilinear distance minimax location problem. AIIE Trans. 4(4), 328–332 (1972).  https://doi.org/10.1080/05695557208974870MathSciNetCrossRefGoogle Scholar
  11. 11.
    Francis, R.L., McGinnis, L.F., White, J.A.: Locational analysis. European J. Oper. Res. 12(3), 220–252 (1983).  https://doi.org/10.1016/0377-2217(83)90194-7MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Golan, J.S.: Semirings and Affine Equations Over Them, Mathematics and Its Applications, vol. 556. Kluwer Acad. Publ., Dordrecht (2003).  https://doi.org/10.1007/978-94-017-0383-3CrossRefGoogle Scholar
  13. 13.
    Gondran, M., Minoux, M.: Graphs, Dioids and Semirings, Operations Research/Computer Science Interfaces, vol. 41. Springer, New York (2008).  https://doi.org/10.1007/978-0-387-75450-5
  14. 14.
    Heidergott, B., Olsder, G.J., van der Woude, J.: Max Plus at Work. Princeton Series in Applied Mathematics. Princeton Univ. Press, Princeton (2006)Google Scholar
  15. 15.
    Hudec, O., Zimmermann, K.: Biobjective center - balance graph location model. Optimization 45(1–4), 107–115 (1999).  https://doi.org/10.1080/02331939908844429MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hudec, O., Zimmermann, K.: A service points location problem with min-max distance optimality criterion. Acta Univ. Carolin. Math. Phys. 34(1), 105–112 (1993)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Klamroth, K.: Single-Facility Location Problems with Barriers. Springer Series in Operations Research and Financial Engineering. Springer, New York (2002).  https://doi.org/10.1007/b98843CrossRefGoogle Scholar
  18. 18.
    Krivulin, N.K.: An extremal property of the eigenvalue for irreducible matrices in idempotent algebra and an algebraic solution to a Rawls location problem. Vestnik St. Petersburg Univ. Math. 44(4), 272–281 (2011).  https://doi.org/10.3103/S1063454111040078MathSciNetCrossRefGoogle Scholar
  19. 19.
    Krivulin, N.K., Plotnikov, P.V.: On an algebraic solution of the Rawls location problem in the plane with rectilinear metric. Vestnik St. Petersburg Univ. Math. 48(2), 75–81 (2015).  https://doi.org/10.3103/S1063454115020065MathSciNetCrossRefGoogle Scholar
  20. 20.
    Krivulin, N.K., Plotnikov, P.V.: Using tropical optimization to solve minimax location problems with a rectilinear metric on the line. Vestnik St. Petersburg Univ. Math. 49(4), 340–349 (2016).  https://doi.org/10.3103/S1063454115040081MathSciNetCrossRefGoogle Scholar
  21. 21.
    Krivulin, N.: Complete solution of a constrained tropical optimization problem with application to location analysis. In: Höfner, P., Jipsen, P., Kahl, W., Müller, M.E. (eds.) RAMICS 2014. LNCS, vol. 8428, pp. 362–378. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06251-8_22CrossRefGoogle Scholar
  22. 22.
    Krivulin, N.: Tropical optimization problems. In: Petrosyan, L.A., Romanovsky, J.V., kay Yeung, D.W. (eds.) Advances in Economics and Optimization: Collected Scientific Studies Dedicated to the Memory of L. V. Kantorovich, Economic Issues, Problems and Perspectives, pp. 195–214. Nova Sci. Publ., New York (2014)Google Scholar
  23. 23.
    Krivulin, N.: A multidimensional tropical optimization problem with nonlinear objective function and linear constraints. Optimization 64(5), 1107–1129 (2015).  https://doi.org/10.1080/02331934.2013.840624MathSciNetCrossRefGoogle Scholar
  24. 24.
    Krivulin, N.: Using tropical optimization to solve constrained minimax singlefacility location problems with rectilinear distance. Comput. Manag. Sci. 14(4), 493–518 (2017).  https://doi.org/10.1007/s10287-017-0289-2MathSciNetCrossRefGoogle Scholar
  25. 25.
    Laporte, G., Nickel, S., da Gama, F.S. (eds.): Location Science. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-13111-5CrossRefzbMATHGoogle Scholar
  26. 26.
    McEneaney, W.M.: Max-Plus Methods for Nonlinear Control and Estimation. Systems and Control: Foundations and Applications. Birkhäuser. Boston (2006).  https://doi.org/10.1007/0-8176-4453-9
  27. 27.
    ReVelle, C.S., Eiselt, H.A.: Location analysis: a synthesis and survey. European J. Oper. Res. 165(1), 1–19 (2005).  https://doi.org/10.1016/j.ejor.2003.11.032MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Sule, D.R.: Logistics of Facility Location and Allocation. Marcel Dekker, New York (2001)CrossRefGoogle Scholar
  29. 29.
    Tharwat, A., Zimmermann, K.: One class of separable optimization problems: solution method, application. Optimization 59(5), 619–625 (2010).  https://doi.org/10.1080/02331930801954698MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zimmermann, K.: Optimization problems with unimodal functions in max-separable constraints. Optimization 24(1–2), 31–41 (1992).  https://doi.org/10.1080/02331939208843777MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zimmermann, K.: Min-max emergency service location problems with additional conditions. In: Oettli, W., Pallaschke, D. (eds.) Advances in Optimization, Lecture Notes in Economics and Mathematical Systems, vol. 382, pp. 504–512. Springer, Berlin (1992).  https://doi.org/10.1007/978-3-642-51682-5_33Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations