Algebraic Derivation of Until Rules and Application to Timer Verification

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11194)


Using correspondences between linear temporal logic and modal Kleene Algebra, we prove in an algebraic manner rules of linear temporal logic involving the until operator. These can be used to verify programmable logic controllers; as a case study we use a part of the control of pedestrian lights, verified with the interactive tool KIV.



We are grateful to the anonymous referees for their careful scrutiny and helpful remarks.


  1. 1.
    Coq. Accessed 7 July 2015
  2. 2.
  3. 3.
    The KIV system. Accessed 20 Mar 2018
  4. 4.
    NuSMVExamples. Accessed 7 Aug 2018
  5. 5.
  6. 6.
    Verification of pedestrian lights in MKA. Accessed 20 Mar 2018
  7. 7.
    VerifyThis 2015. Accessed 8 Aug 2018
  8. 8.
  9. 9.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Back, R.-J., von Wright, J.: Refinement Calculus - A Systematic Introduction. Graduate Texts in Computer Science. Springer, New York (1998)CrossRefGoogle Scholar
  11. 11.
    Ben-Ari, M.: Mathematical Logic for Computer Science, 3rd edn. Springer, London (2012)CrossRefGoogle Scholar
  12. 12.
    Berghammer, R., Stucke, I., Winter, M.: Using relation-algebraic means and tool support for investigating and computing bipartitions. J. Log. Algebr. Meth. Prog. 90, 102–124 (2017)CrossRefGoogle Scholar
  13. 13.
    Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1967)Google Scholar
  14. 14.
    Brunet, P., Pous, D., Stucke, I.: Cardinalities of finite relations in Coq. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 466–474. Springer, Cham (2016). Scholar
  15. 15.
    Carlsson, H., Svensson, B., Danielson, F., Lennartson, B.: Methods for reliable simulation-based PLC code verification. IEEE Trans. Ind. Inform. 8(2), 267–278 (2012)CrossRefGoogle Scholar
  16. 16.
    Desharnais, J., Möller, B.: Non-associative Kleene algebra and temporal logics. In: Höfner, P., Pous, D., Struth, G. (eds.) RAMICS 2017. LNCS, vol. 10226, pp. 93–108. Springer, Cham (2017). Scholar
  17. 17.
    Desharnais, J., Möller, B., Struth, G.: Modal Kleene algebra and applications - a survey. J. Relat. Methods Comput. Sci. 1, 93–131 (2004)zbMATHGoogle Scholar
  18. 18.
    Ehm, T., Möller, B., Struth, G.: Kleene modules. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS 2003. LNCS, vol. 3051, pp. 112–123. Springer, Heidelberg (2004). Scholar
  19. 19.
    Ertel, J.: Verifikation von SPS-Programmen MIT Kleene Algebra. Master’s thesis, Institut of Informatics, University of Augsburg (2017)Google Scholar
  20. 20.
    Ésik, Z., Fahrenberg, U., Legay, A., Quaas, K.: Kleene algebras and semimodules for energy problems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 102–117. Springer, Cham (2013). Scholar
  21. 21.
    Glück, R., Krebs, F.B.: Towards interactive verification of programmable logic controllers using modal Kleene algebra and KIV. In: Kahl, W., Winter, M., Oliveira, J.N. (eds.) RAMICS 2015. LNCS, vol. 9348, pp. 241–256. Springer, Cham (2015). Scholar
  22. 22.
    Gondran, M., Minoux, M.: Graphs, Dioids and Semirings. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  23. 23.
    Guttmann, W.: Stone relation algebras. In: Höfner, P., Pous, D., Struth, G. (eds.) RAMICS 2017. LNCS, vol. 10226, pp. 127–143. Springer, Cham (2017). Scholar
  24. 24.
    Höfner, P., Möller, B.: Dijkstra, Floyd and Warshall meet Kleene. Formal Asp. Comput. 24(4–6), 459–476 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hollenberg, M.: An equational axiomatization of dynamic negation and relational composition. J. Log. Lang. Inf. 6(4), 381–401 (1997)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Hollenberg, M.: Equational axioms of test algebra. In: Nielsen, M., Thomas, W. (eds.) CSL 1997. LNCS, vol. 1414, pp. 295–310. Springer, Heidelberg (1998). Scholar
  27. 27.
    Jackson, M., McKenzie, R.: Interpreting graph colorability in finite semigroups. IJAC 16(1), 119–140 (2006)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Jee, E., Yoo, J., Cha, S.D., Bae, D.-H.: A data flow-based structural testing technique for FBD programs. Inf. Softw. Technol. 51(7), 1131–1139 (2009)CrossRefGoogle Scholar
  29. 29.
    Jipsen, P., Rose, H.: Varieties of Lattices, 1st edn. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  30. 30.
    Kahl, W.: Graph transformation with symbolic attributes via monadic coalgebra homomorphisms. ECEASST 71, 5.1–5.17 (2014)Google Scholar
  31. 31.
    Kawahara, Y., Furusawa, H.: An algebraic formalization of fuzzy relations. Fuzzy Sets Syst. 101(1), 125–135 (1999)CrossRefGoogle Scholar
  32. 32.
    Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inf. Comput. 110(2), 366–390 (1994)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Kozen, D.: Kleene algebra with tests. ACM Trans. Prog. Lang. Syst. 19(3), 427–443 (1997)CrossRefGoogle Scholar
  34. 34.
    Kröger, F., Merz, S.: Temporal Logic and State Systems. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2008)Google Scholar
  35. 35.
    Li, J., Qeriqi, A., Steffen, M., Yu, I.C.: Automatic translation from FBD-PLC-programs to NuSMV for model checking safety-critical control systems. In: NIK 2016. Bibsys Open Journal Systems, Norway (2016)Google Scholar
  36. 36.
    Litak, T., Mikulás, S., Hidders, J.: Relational lattices. In: Höfner, P., Jipsen, P., Kahl, W., Müller, M.E. (eds.) RAMICS 2014. LNCS, vol. 8428, pp. 327–343. Springer, Cham (2014). Scholar
  37. 37.
    Manes, E., Benson, D.: The inverse semigroup of a sum-ordered semiring. Semigroup Forum 31, 129–152 (1985)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Michels, G., Joosten, S., van der Woude, J., Joosten, S.: Ampersand. In: de Swart, H. (ed.) RAMICS 2011. LNCS, vol. 6663, pp. 280–293. Springer, Heidelberg (2011). Scholar
  39. 39.
    Möller, B., Höfner, P., Struth, G.: Quantales and temporal logics. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 263–277. Springer, Heidelberg (2006). Scholar
  40. 40.
    Möller, B., Roocks, P.: An algebra of database preferences. J. Log. Algebr. Meth. Program. 84(3), 456–481 (2015)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Oliveira, J.N.: A relation-algebraic approach to the “Hoare logic” of functional dependencies. J. Log. Algebr. Meth. Prog. 83(2), 249–262 (2014)CrossRefGoogle Scholar
  42. 42.
    Pavlovic, O., Ehrich, H.-D.: Model checking PLC software written in function block diagram. In: ICST 2010, CEUR Workshop Proceedings. IEEE Computer Society (2010)Google Scholar
  43. 43.
    Pratt, V.: Dynamic algebras: examples, constructions, applications. Studia Logica 50, 571–605 (1991)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Solin, K., von Wright, J.: Enabledness and termination in refinement algebra. Sci. Comput. Prog. 74(8), 654–668 (2009)MathSciNetCrossRefGoogle Scholar
  46. 46.
    von Karger, B.: Temporal algebra. Math. Struct. Comput. Sci. 8(3), 277–320 (1998)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Wan, H., Chen, G., Song, X., Gu, M.: Formalization and verification of PLC timers in Coq. In: Ahamed, S.I., et al. (eds.): Proceedings of the COMPSAC 2009, pp. 315–323. IEEE Computer Society (2009)Google Scholar
  48. 48.
    Wimmer, S., Lammich, P.: Verified model checking of timed automata. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 61–78. Springer, Cham (2018). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.msg-lifeLeinfelden-EchterdingenGermany
  2. 2.German Aerospace CenterAugsburgGermany
  3. 3.University of AugsburgAugsburgGermany

Personalised recommendations