Skip to main content

Adaptive Formal Framework for WMN Routing Protocols

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11222))

Abstract

Wireless Mesh Networks (WMNs) are self-organising and self-healing wireless networks that provide support for broadband communication without requiring fixed infrastructure. A determining factor for the performance and reliability of such networks is the routing protocols applied in these networks. Formal modelling and verification of routing protocols are challenging tasks, often skipped by protocol designers. Despite some commonality between different models of routing protocols that have been published, these models are often tailored to a specific protocol which precludes easily comparing models. This paper presents an adaptive, generic and reusable framework as well as crucial generic properties w.r.t. system requirements, to model and verify WMN routing protocols. In this way, protocol designers can adapt the generic models based on protocol specifications and verify routing protocols prior to implementation. This model uses Uppaal SMC to identify the main common components of routing protocols, capturing timing aspect of protocols, communication between nodes, probabilities of message loss and link breakage, etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    To avoid confusion, we will refer to this type of communication as multicast, instead of broadcast. We reserve the term broadcast for Uppaal channels.

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  Google Scholar 

  2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9_7

    Chapter  Google Scholar 

  3. Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for distance vector routing protocols. J. ACM 49(4), 538–576 (2002)

    Article  MathSciNet  Google Scholar 

  4. Chaudhary, K., Fehnker, A., Mehta, V.: Modelling, verification, and comparative performance analysis of the B.A.T.M.A.N. protocol. In: Hermanns, H., Höfner, P. (eds.) MARS 2017, vol. 244, pp. 53–65 (2017)

    Article  Google Scholar 

  5. Clausen, T., Jacquet, P.: Optimized link state routing protocol (OLSR). RFC3626 (2003). http://www.ietf.org/rfc/rfc3626

  6. Dal Corso, A., Macedonio, D., Merro, M.: Statistical model checking of ad hoc routing protocols in lossy grid networks. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 112–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9_9

    Chapter  Google Scholar 

  7. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC tutorial. STTT 17(4), 397–415 (2015)

    Article  Google Scholar 

  8. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.: Automated analysis of AODV using UPPAAL. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 173–187. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_13

    Chapter  MATH  Google Scholar 

  9. Fehnker, A., van Hoesel, L., Mader, A.: Modelling and verification of the LMAC protocol for wireless sensor networks. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 253–272. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73210-5_14

    Chapter  Google Scholar 

  10. Fehnker, A., Höfner, P., Kamali, M., Mehta, V.: Topology-based mobility models for wireless networks. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 389–404. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-1_32

    Chapter  Google Scholar 

  11. van Glabbeek, R., Höfner, P., Portmann, M., Tan, W.L.: Modelling and verifying the AODV routing protocol. Distrib. Comput. 29(4), 279–315 (2016)

    Article  MathSciNet  Google Scholar 

  12. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Steffen, B., Levi, G. (eds.) Verification, Model Checking, and Abstract Interpretation, pp. 73–84. Springer, Berlin (2004)

    Chapter  Google Scholar 

  13. Höfner, P., McIver, A.: Statistical model checking of wireless mesh routing protocols. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 322–336. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-4_22

    Chapter  Google Scholar 

  14. Kamali, M., Petre, L.: Modelling link state routing in event-B. In: Wang, H., Mokhtari, M. (eds.) ICECCS 2016, pp. 207–210. IEEE (2016)

    Google Scholar 

  15. Kamali, M., Höfner, P., Kamali, M., Petre, L.: Formal analysis of proactive, distributed routing. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276, pp. 175–189. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22969-0_13

    Chapter  Google Scholar 

  16. Kamali, M., Merro, M., Dal Corso, A.: AODVv2: performance vs. loop freedom. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 337–350. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73117-9_24

    Chapter  Google Scholar 

  17. Kamali, M., Petre, L.: Improved recovery for proactive, distributed routing. In: ICECCS 2015, pp. 178–181. IEEE (2015)

    Google Scholar 

  18. Liu, S., Ölveczky, P.C., Meseguer, J.: A framework for mobile ad hoc networks in real-time maude. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 162–177. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12904-4_9

    Chapter  Google Scholar 

  19. Neumann, A., Aichele, C., Lindner, M., Wunderlich, S.: Better approach to mobile ad-hoc networking (BATMAN). Internet draft00 (2008). https://tools.ietf.org/html/draft-wunderlich-openmesh-manet-routing-00

  20. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude. High.-Order Symb. Comput. 20(1), 161–196 (2007)

    Article  Google Scholar 

  21. Perkins, C., Stan, R., Dowdell, J., Steenbrink, L., Mercieca, V.: Ad hoc on-demand distance vector version 2 (AODVv2) routing. Internet Draft 16 (2016). https://datatracker.ietf.org/doc/draft-ietf-manet-aodvv2

  22. Yousefi, B., Ghassemi, F., Khosravi, R.: Modeling and efficient verification of wireless ad hoc networks. Form. Asp. Comput. 29(6), 1051–1086 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mojgan Kamali or Ansgar Fehnker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamali, M., Fehnker, A. (2018). Adaptive Formal Framework for WMN Routing Protocols. In: Bae, K., Ölveczky, P. (eds) Formal Aspects of Component Software. FACS 2018. Lecture Notes in Computer Science(), vol 11222. Springer, Cham. https://doi.org/10.1007/978-3-030-02146-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02146-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02145-0

  • Online ISBN: 978-3-030-02146-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics