Skip to main content

Strong Lensing by Galaxies

  • Chapter
  • First Online:
Principles of Gravitational Lensing

Part of the book series: Springer Praxis Books ((ASTRONOMY))

Abstract

The remainder of this book is concerned with applications of gravitational lensing of cosmological relevance. We proceed by considering ever larger mass and distance scales, starting with galaxy-scale strong lensing in the present chapter. The background sources in this context are point-like quasars or extended galaxies. As we will see in Sect. 6.1, the axisymmetric models of Chap. 2 can be readily adapted to the more general setting of Chap. 4. Only such non-axisymmetric mass distributions can be expected to describe observed lens systems. We noted in Chap. 2 that actual galaxies have finite density everywhere and offered the nonsingular isothermal sphere as an example. We extend that discussion to more general lenses in Sect. 6.2. Even all of these refinements are insufficient for understanding the full variety of observed galaxy lenses. For example, we must account for extended sources (Sect. 6.3) and for lenses that cannot be described by smooth density profiles (Sect. 6.4). Using the properties of observed images to infer the mass distribution of the lens is the subject of Sect. 6.5. Applications of the models and methods described in this chapter are outlined in Sect. 6.6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a source on the negative u-axis, we let (x, y) → (−x, y) in Eq. (6.5a) while leaving the sign of u unchanged.

  2. 2.

    For a source on the negative v-axis, we let (x, y) → (x, −y) in Eq. (6.9a) while leaving the sign of v unchanged.

  3. 3.

    Same as Footnote 1, but for Eq. (6.17a).

  4. 4.

    Same as Footnote 2, but for Eq. (6.18a).

  5. 5.

    The isothermal model does not have any radial magnification.

  6. 6.

    Another model for subhalos is the NFW model that we will encounter in Sect. 7.1.1.

  7. 7.

    In some literature, especially for cluster lensing, this model is referred to as a pseudo-isothermal elliptical mass distribution, or PIEMD, after Kassiola and Kovner (1993). It has also been called a pseudo-Jaffe model (Keeton et al. 2000a).

  8. 8.

    This local region needs to be defined with some care because the deflection can be non-negligible even at many times the star’s Einstein radius (see, e.g., Wambsganss 1999).

  9. 9.

    This is a generalization of the Chang-Refsdal lens mentioned in Problem 5.2 to multiple stars.

  10. 10.

    If the images are blurred together, \(\chi ^2_{\mathrm {pos}}\) can be generalized to account for covariances between different images.

  11. 11.

    The exception is radio wavelengths, where observations usually use interferometry. The modeling methods discussed here can be generalized to handle interferometric data.

  12. 12.

    Section 6.5.1 shows that the inferred Einstein radius does depend on the choice of model, but the quantitative difference between results from various models is typically no more than a few percent.

References

  • Bayer, D., Chatterjee, S., Koopmans, L. V. E., Vegetti, S., McKean, J. P., Treu, T., et al. (2018). Observational constraints on the sub-galactic matter-power spectrum from galaxy-galaxy strong gravitational lensing. arXiv e-prints, arXiv:1803.05952.

    Google Scholar 

  • Birrer, S., Amara, A., & Refregier, A. (2015). Gravitational lens modeling with basis sets. The Astrophysical Journal, 813, 102.

    Article  ADS  Google Scholar 

  • Birrer, S., Amara, A., & Refregier, A. (2017). Lensing substructure quantification in RX J1131∓1231: A 2 keV lower bound on dark matter thermal relic mass. Journal of Cosmology and Astroparticle Physics, 5, 037.

    Article  ADS  Google Scholar 

  • Bonvin, V., Courbin, F., Suyu, S. H., Marshall, P. J., Rusu, C. E., Sluse, D., et al. (2017). H0LiCOW - V. New COSMOGRAIL time delays of HE 0435−1223: H 0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model. Monthly Notices of the Royal Astronomical Society, 465, 4914.

    Google Scholar 

  • Casey, C. M., Narayanan, D., & Cooray, A. (2014). Dusty star-forming galaxies at high redshift. Physics Reports, 541, 45.

    Article  ADS  Google Scholar 

  • Chartas, G., Rhea, C., Kochanek, C., Dai, X., Morgan, C., Blackburne, J., et al. (2016). Gravitational lensing size scales for quasars. Astronomische Nachrichten, 337, 356.

    Article  ADS  Google Scholar 

  • Chatterjee, S., & Koopmans, L. V. E. (2018). The inner mass power spectrum of galaxies using strong gravitational lensing: Beyond linear approximation. Monthly Notices of the Royal Astronomical Society, 474, 1762.

    Article  ADS  Google Scholar 

  • Chen, J., Rozo, E., Dalal, N., & Taylor, J. E. (2007). Astrometric perturbations in substructure lensing. The Astrophysical Journal, 659, 52.

    Article  ADS  Google Scholar 

  • Chiba, M. (2002). Probing dark matter substructure in lens galaxies. The Astrophysical Journal, 565, 17.

    Article  ADS  Google Scholar 

  • Cyr-Racine, F.-Y., Keeton, C. R., & Moustakas, L. A. (2018). Beyond subhalos: Probing the collective effect of the universe’s small-scale structure with gravitational lensing. arXiv e-prints, arXiv:1806.07897.

    Google Scholar 

  • Cyr-Racine, F.-Y., Moustakas, L. A., Keeton, C. R., Sigurdson, K., & Gilman, D. A. (2016). Dark census: Statistically detecting the satellite populations of distant galaxies. Physical Review D, 94, 043505.

    Article  ADS  MathSciNet  Google Scholar 

  • Dalal, N., & Kochanek, C. S. (2002). Direct detection of cold dark matter substructure. The Astrophysical Journal, 572, 25.

    Article  ADS  Google Scholar 

  • Despali, G., Vegetti, S., White, S. D. M., Giocoli, C., & van den Bosch, F. C. (2018). Modelling the line-of-sight contribution in substructure lensing. Monthly Notices of the Royal Astronomical Society, 475, 5424.

    Article  ADS  Google Scholar 

  • Geach, J. E., Ivison, R. J., Dye, S., & Oteo, I. (2018). A magnified view of circumnuclear star formation and feedback around an AGN at z = 2.6. The Astrophysical Journal Letters, 866, L12.

    Google Scholar 

  • Hezaveh, Y., Dalal, N., Holder, G., Kisner, T., Kuhlen, M., & Perreault Levasseur, L. (2016a). Measuring the power spectrum of dark matter substructure using strong gravitational lensing. Journal of Cosmology and Astroparticle Physics, 11, 048.

    Article  ADS  Google Scholar 

  • Hezaveh, Y., Dalal, N., Holder, G., Kuhlen, M., Marrone, D., Murray, N., et al. (2013a). Dark matter substructure detection using spatially resolved spectroscopy of lensed dusty galaxies. The Astrophysical Journal, 767, 9.

    Article  ADS  Google Scholar 

  • Hezaveh, Y. D., Dalal, N., Marrone, D. P., Mao, Y.-Y., Morningstar, W., Wen, D., et al. (2016b). Detection of lensing substructure using ALMA Observations of the Dusty Galaxy SDP.81. The Astrophysical Journal, 823, 37.

    Google Scholar 

  • Hezaveh, Y. D., & Holder, G. P. (2011). Effects of strong gravitational lensing on millimeter-wave galaxy number counts. The Astrophysical Journal, 734, 52.

    Article  ADS  Google Scholar 

  • Hezaveh, Y. D., Marrone, D. P., Fassnacht, C. D., Spilker, J. S., Vieira, J. D., Aguirre, J. E., et al. (2013b). ALMA Observations of SPT-discovered, strongly lensed, dusty, star-forming galaxies. The Astrophysical Journal, 767, 132.

    Article  ADS  Google Scholar 

  • Holder, G. P., & Schechter, P. L. (2003). External shear in quadruply imaged lens systems. The Astrophysical Journal, 589, 688.

    Article  ADS  Google Scholar 

  • Inada, N., Oguri, M., Keeton, C. R., Eisenstein, D. J., Castander, F. J., Chiu, K., et al. (2005). Discovery of a fifth image of the large separation gravitationally lensed quasar SDSS J1004+4112. Publications of the Astronomical Society of Japan, 57, L7.

    Article  ADS  Google Scholar 

  • Inoue, K. T. (2016). On the origin of the flux ratio anomaly in quadruple lens systems. Monthly Notices of the Royal Astronomical Society, 461, 164.

    Article  ADS  Google Scholar 

  • Kassiola, A., & Kovner, I. (1993). Elliptic mass distributions versus elliptic potentials in gravitational lenses. The Astrophysical Journal, 417, 450.

    Article  ADS  Google Scholar 

  • Keeton, C. R. (2003). Lensing and the centers of distant early-type galaxies. The Astrophysical Journal, 582, 17.

    Article  ADS  Google Scholar 

  • Keeton, C. R. (2010). On modeling galaxy-scale strong lens systems. General Relativity and Gravitation, 42, 2151.

    Article  ADS  MathSciNet  Google Scholar 

  • Keeton, C. R., Falco, E. E., Impey, C. D., Kochanek, C. S., Lehár, J., McLeod, B. A., et al. (2000a). The host galaxy of the lensed quasar Q0957+561. The Astrophysical Journal, 542, 74.

    Article  ADS  Google Scholar 

  • Keeton, C. R., & Kochanek, C. S. (1998). Gravitational lensing by spiral galaxies. The Astrophysical Journal, 495, 157.

    Article  ADS  Google Scholar 

  • Keeton, C. R., Mao, S., & Witt, H. J. (2000b). Gravitational lenses with more than four images. I. Classification of caustics. The Astrophysical Journal, 537, 697.

    Google Scholar 

  • Keeton, C. R., & Moustakas, L. A. (2009). A new channel for detecting dark matter substructure in galaxies: Gravitational lens time delays. The Astrophysical Journal, 699, 1720.

    Article  ADS  Google Scholar 

  • Kochanek, C. S. (2004). Quantitative interpretation of quasar microlensing light curves. The Astrophysical Journal, 605, 58.

    Article  ADS  Google Scholar 

  • Kochanek, C. S., Dai, X., Morgan, C., Morgan, N., & Poindexter, G., S. C. (2007). Turning AGN microlensing from a curiosity into a tool. In G. J. Babu & E. D. Feigelson (Eds.), Statistical challenges in modern astronomy IV. Astronomical society of the Pacific conference series (Vol. 371, p. 43). New York: Springer.

    Google Scholar 

  • Kochanek, C. S., Keeton, C. R., & McLeod, B. A. (2001). The importance of Einstein rings. The Astrophysical Journal, 547, 50.

    Article  ADS  Google Scholar 

  • Koopmans, L. V. E. (2005). Gravitational imaging of cold dark matter substructures. Monthly Notices of the Royal Astronomical Society, 363, 1136.

    Article  ADS  Google Scholar 

  • Kormann, R., Schneider, P., & Bartelmann, M. (1994). Isothermal elliptical gravitational lens models. Astronomy and Astrophysics, 284, 285

    ADS  Google Scholar 

  • Mao, S., & Schneider, P. (1998). Evidence for substructure in lens galaxies? Monthly Notices of the Royal Astronomical Society, 295, 587.

    Article  ADS  Google Scholar 

  • Mao, S., Witt, H. J., & Koopmans, L. V. E. (2001). The influence of central black holes on gravitational lenses. Monthly Notices of the Royal Astronomical Society, 323, 301.

    Article  ADS  Google Scholar 

  • McCully, C., Keeton, C. R., Wong, K. C., & Zabludoff, A. I. (2014). A new hybrid framework to efficiently model lines of sight to gravitational lenses. Monthly Notices of the Royal Astronomical Society, 443, 3631.

    Article  ADS  Google Scholar 

  • McCully, C., Keeton, C. R., Wong, K. C., & Zabludoff, A. I. (2017). Quantifying environmental and line-of-sight effects in models of strong gravitational lens systems. The Astrophysical Journal, 836, 141.

    Article  ADS  Google Scholar 

  • Mediavilla, E., Muñoz, J. A., Falco, E., Motta, V., Guerras, E., Canovas, H., et al. (2009). Microlensing-based estimate of the mass fraction in compact objects in lens galaxies. The Astrophysical Journal, 706, 1451.

    Article  ADS  Google Scholar 

  • Mediavilla, E., Muñoz, J. A., Lopez, P., Mediavilla, T., Abajas, C., Gonzalez-Morcillo, C., et al. (2006). A fast and very accurate approach to the computation of microlensing magnification patterns based on inverse polygon mapping. The Astrophysical Journal, 653, 942.

    Article  ADS  Google Scholar 

  • Metcalf, R. B. (2005). The importance of intergalactic structure to gravitationally lensed quasars. The Astrophysical Journal, 629, 673.

    Article  ADS  Google Scholar 

  • Metcalf, R. B., & Madau, P. (2001). Compound gravitational lensing as a probe of dark matter substructure within galaxy halos. The Astrophysical Journal, 563, 9.

    Article  ADS  Google Scholar 

  • Negrello, M., Hopwood, R., De Zotti, G., Cooray, A., Verma, A., Bock, J., et al. (2010). The detection of a population of submillimeter-bright, strongly lensed galaxies. Science, 330, 800.

    Article  ADS  Google Scholar 

  • Nierenberg, A. M., Treu, T., Wright, S. A., Fassnacht, C. D., & Auger, M. W. (2014). Detection of substructure with adaptive optics integral field spectroscopy of the gravitational lens B1422+231. Monthly Notices of the Royal Astronomical Society, 442, 2434.

    Article  ADS  Google Scholar 

  • Oguri, M., & Keeton, C. R. (2004). Effects of triaxiality on the statistics of large-separation gravitational lenses. The Astrophysical Journal, 610, 663.

    Article  ADS  Google Scholar 

  • Oguri, M., Ofek, E. O., Inada, N., Morokuma, T., Falco, E. E., Kochanek, C. S., et al. (2008). The third image of the large-separation lensed quasar SDSS J1029+2623. The Astrophysical Journal Letters, 676, L1.

    Article  ADS  Google Scholar 

  • Petters, A. O., Levine, H., & Wambsganss, J. (2001). Singularity theory and gravitational lensing. Boston: Birkhäuser.

    Book  Google Scholar 

  • Rivera, J., Baker, A. J., Gallardo, P. A., Gralla, M., Harris, A. I., Huffenberger, K. M., et al. (2018). The Atacama Cosmology Telescope: CO(J = 3 − 2) mapping and lens modeling of an ACT-selected dusty star-forming galaxy. arXiv e-prints, arXiv:1807.08895.

    Google Scholar 

  • Rusin, D., Keeton, C. R., & Winn, J. N. (2005). Measuring supermassive black holes in distant galaxies with central lensed images. The Astrophysical Journal Letters, 627, L93.

    Article  ADS  Google Scholar 

  • Rusin, D., & Ma, C.-P. (2001). Constraints on the inner mass profiles of lensing galaxies from missing odd images. The Astrophysical Journal Letters, 549, L33.

    Article  ADS  Google Scholar 

  • Rusu, C. E., Fassnacht, C. D., Sluse, D., Hilbert, S., Wong, K. C., Huang, K.-H., et al. (2017). H0LiCOW - III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435−1223 through weighted galaxy counts. Monthly Notices of the Royal Astronomical Society, 467, 4220.

    Google Scholar 

  • Schneider, P., Ehlers, J., & Falco, E. E. (1992). Gravitational lenses. Berlin: Springer.

    Google Scholar 

  • Sluse, D., Sonnenfeld, A., Rumbaugh, N., Rusu, C. E., Fassnacht, C. D., Treu, T., et al. (2017). H0LiCOW - II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE 0435−1223. Monthly Notices of the Royal Astronomical Society, 470, 4838.

    Google Scholar 

  • Suyu, S. H., Bonvin, V., Courbin, F., Fassnacht, C. D., Rusu, C. E., Sluse, D., et al. (2017). H0LiCOW - I. H 0 lenses in COSMOGRAIL’s Wellspring: Program overview. Monthly Notices of the Royal Astronomical Society, 468, 2590.

    Google Scholar 

  • Suyu, S. H., Marshall, P. J., Hobson, M. P., & Blandford, R. D. (2006). A Bayesian analysis of regularized source inversions in gravitational lensing. Monthly Notices of the Royal Astronomical Society, 371, 983.

    Article  ADS  Google Scholar 

  • Tagore, A. S., & Jackson, N. (2016). On the use of shapelets in modelling resolved, gravitationally lensed images. Monthly Notices of the Royal Astronomical Society, 457, 3066.

    Article  ADS  Google Scholar 

  • Tagore, A. S., & Keeton, C. R. (2014). Statistical and systematic uncertainties in pixel-based source reconstruction algorithms for gravitational lensing. Monthly Notices of the Royal Astronomical Society, 445, 694.

    Article  ADS  Google Scholar 

  • Treu, T. (2010). Strong lensing by galaxies. Annual Review of Astronomy and Astrophysics, 48, 87.

    Article  ADS  Google Scholar 

  • Treu, T., & Marshall, P. J. (2016). Time delay cosmography. The Astronomy and Astrophysics Review, 24, 11.

    Article  ADS  Google Scholar 

  • Vegetti, S., Czoske, O., & Koopmans, L. V. E. (2010a). Quantifying dwarf satellites through gravitational imaging: The case of SDSSJ120602.09+514229.5. Monthly Notices of the Royal Astronomical Society, 407, 225.

    Google Scholar 

  • Vegetti, S., & Koopmans, L. V. E. (2009). Bayesian strong gravitational-lens modelling on adaptive grids: Objective detection of mass substructure in Galaxies. Monthly Notices of the Royal Astronomical Society, 392, 945.

    Article  ADS  Google Scholar 

  • Vegetti, S., Koopmans, L. V. E., Bolton, A., Treu, T., & Gavazzi, R. (2010b). Detection of a dark substructure through gravitational imaging. Monthly Notices of the Royal Astronomical Society, 408, 1969.

    Article  ADS  Google Scholar 

  • Vegetti, S., Lagattuta, D. J., McKean, J. P., Auger, M. W., Fassnacht, C. D., & Koopmans, L. V. E. (2012). Gravitational detection of a low-mass dark satellite galaxy at cosmological distance. Nature, 481, 341.

    Article  ADS  Google Scholar 

  • Wambsganss, J. (1999). Gravitational lensing: Numerical simulations with a hierarchical tree code. Journal of Computational and Applied Mathematics, 109, 353.

    Article  ADS  MathSciNet  Google Scholar 

  • Warren, S. J., & Dye, S. (2003). Semilinear gravitational lens inversion. The Astrophysical Journal, 590, 673.

    Article  ADS  Google Scholar 

  • Winn, J. N., Rusin, D., & Kochanek, C. S. (2004). The central image of a gravitationally lensed quasar. Nature, 427, 613.

    Article  ADS  Google Scholar 

  • Wong, K. C., Suyu, S. H., Auger, M. W., Bonvin, V., Courbin, F., Fassnacht, C. D., et al. (2017). H0LiCOW - IV. Lens mass model of HE 0435−1223 and blind measurement of its time-delay distance for cosmology. Monthly Notices of the Royal Astronomical Society, 465, 4895.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Congdon, A.B., Keeton, C.R. (2018). Strong Lensing by Galaxies. In: Principles of Gravitational Lensing. Springer Praxis Books(). Springer, Cham. https://doi.org/10.1007/978-3-030-02122-1_6

Download citation

Publish with us

Policies and ethics