Advertisement

Late Pleistocene Diatoms of the Lower Basin from the Quequén Salado River, Argentina

  • Marcela A. EspinosaEmail author
  • Elisa Beilinson
Conference paper
  • 178 Downloads
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

Diatom assemblages from a site called Cueva del Tigre were studied. It is located in the lower basin of the Quequén Salado River, Buenos Aires province (38° 50′ 2.2″ S–60° 32′ 7.1″ W). The results are part of a project that includes sedimentologic, stratigraphic and palaeontologic aspects with the aim of reconstructing the environmental history of south-eastern Buenos Aires during the Late Cenozoic. The studied sedimentary succession is 1.90 m thick and has a tabular geometry with alternating levels of coarse sandstone and clayey siltstones. Diatom analysis of the 17 samples corresponding to four levels (N1, N2, N3 and N4) was performed using conventional techniques of taxonomic identification and treatment. A total of 74 diatom taxa were recognized and grouped according to salt tolerance and life form. Cluster analysis allowed dividing the sedimentary sequence into two diatom zones. The deposit begins with a freshwater/shallow lakes with associated vegetation (N1: 7 samples) dominated by Cyclotella meneghiniana Kützing 1844 (plankton) accompanied by the epiphytes Cocconeis placentula Ehrenberg 1838 and Cymbella cistula (Ehrenberg) Kirchner 1878. The overlapping levels: N2 (4 samples), N3 (3 samples) dated on 29,360 ± 670 years 14C BP (33,128 cal. years BP) and N4 (3 samples) represent brackish conditions in a shallow pond, where benthic epipelic diatoms dominate: Caloneis westii (W.Smith) Hendey 1964, Campylodiscus clypeus Ehrenberg 1840 and Surirella striatula Turpin 1828. Today, these taxa live in temperate waters with salinities of 2–10‰. The comparison between fossil and modern samples through NMDS analysis showed that modern diatom assemblages from the Quequén Salado River are distinctly dissimilar to the Pleistocene assemblages under study, but they strongly correlate with diatom assemblages from Buenos Aires shallow lakes in agreement with the autoecological interpretation.

Keywords

Diatoms Palaeoenvironments Pleistocene Argentina South America 

Notes

Acknowledgements

The authors wish to acknowledge to C. Deschamps, R. Tomassini, G. Gasparini, M. Zárate and J. Rabassa for assistance with fieldwork and sedimentologic descriptions. J. P. Lancia processed the samples. The criticism of anonymous reviewers on earlier version of this manuscript is acknowledged. Financial support was provided by Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 2014-0496) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 2016-1146).

References

  1. Aramayo SA, Gutierrez Tellez B et al (2005) Sedimentologic and paleontologic study of the southeast coast of Buenos Aires province, Argentina: a late Pleistocene-Holocene paleoenvironmental reconstruction. J S Am Earth Sci 20:65–71CrossRefGoogle Scholar
  2. Beilinson E, Gasparini GM et al (2015) Insights into Pleistocene palaeoenvironments and biostratigraphy in southern Buenos Aires province (Argentina) from continental deposits. J S Am Earth Sci 60:82–91CrossRefGoogle Scholar
  3. Beilinson E, Gasparini GM et al (2017) The Quequén Salado river basin: geology and biochronostratigraphy of the Mio-Pliocene boundary in the southern Pampean plain, Argentina. J S Am Earth Sci 76:362–374CrossRefGoogle Scholar
  4. Blasi A, Castiñeira Latorre C et al (2010) Paleoambientes de la cuenca media del Río Luján (Buenos Aires, Argentina) durante el último período glacial (EIO 4-2). Lat Am J Sedimentol Basin Anal 17(2):85–111Google Scholar
  5. Cermeño P, Marañón E et al (2013) Response of marine diatom communities to late quaternary abrupt climate changes. J Plankton Res 35(1):12–21CrossRefGoogle Scholar
  6. De Wolf H (1982) Method of coding of ecological data from diatoms for computer utilization. Meded Rijks Geol Dienst 36:95–99Google Scholar
  7. Denys L (1991/1992) A check-list of the diatoms in the Holocene deposits of the Western Belgian coastal plain with the survey of their apparent ecological requirements. In: Introduction, ecological code and complete list. Geological Service of Belgium, Professional Paper 246:1–41Google Scholar
  8. Dos Santos-Fischer C, Stalliviere Corrêa IC et al (2016) Paleoenvironmental insights into the quaternary evolution of the southern Brazilian coast based on fossil and modern diatom assemblage. Palaeogeogr Palaeoclimatol Palaeoecol 446:108–124CrossRefGoogle Scholar
  9. Espinosa MA (2016) Response of diatoms to late quaternary climate changes. In: Gasparini GM, Rabassa J, Deschamps C, Tonni EP (eds) Marine isotope stage 3 in southern South America, 60 KA B.P.–30 KA B.P., Springer Earth System Sciences, pp 299–319CrossRefGoogle Scholar
  10. Espinosa MA, De Francesco CG et al (2003) Paleoenvironmental reconstruction of Holocene coastal deposits from the southeastern Buenos Aires province, Argentina. J Paleolimnol 29:49–60CrossRefGoogle Scholar
  11. Espinosa MA, Hassan GS et al (2012) Diatom inferred salinity changes in relation to Holocene sea level fluctuations in estuarine environments from Argentina. Alcheringa Austral J Palaeontol 36:373–386CrossRefGoogle Scholar
  12. Fayó R, Espinosa MA (2014) Reconstrucción paleoambiental de la planicie costera de Mar Chiquita (provincia de Buenos Aires, Argentina) durante el Holoceno, basada en diatomeas. Ameghiniana 51(6):510–528CrossRefGoogle Scholar
  13. Frenguelli J (1928) Observaciones geológicas en la región costanera sur de la provincia de Buenos Aires. Univ. Nac. Litoral, Anales II, Sección de Historia y Geografía, Santa Fé, Argentina, p 145Google Scholar
  14. Frenguelli J (1945) Las diatomeas del Platense. Revista del Museo de La Plata. Paleontología 16:77–221Google Scholar
  15. Garcia Rodriguez F, Sprechmann P et al (2004) Holocene trophic state changes in relation to sea level variation in Lake Blanca, SE Uruguay. J Paleolimnol 31:99–115CrossRefGoogle Scholar
  16. Gasse F (1986) East African diatoms:taxonomy, ecological distribution. Bibliotheca Diatomologica 11. J Cramer, Stuttgart, pp 202Google Scholar
  17. Grill SC, Fernández AL (2016) Multi-proxy analysis of late quaternary sediments in the lower basin of the Quequén Salado river (Buenos Aires province, Argentina): an update In: Martínez M, Olivera D (eds) Palinología del Meso-Cenozoico de Argentina. Publicación Electrónica de la Asociación Paleontológica Argentina 16(2):129–147Google Scholar
  18. Grimm E (1991) Tilia software, Illinois state museum, research and collection center. Springfield, IllinoisGoogle Scholar
  19. Guiry MD, Guiry GM (2018) Algaebase. Worldwide electronic publication. National University of Ireland, Galway, http://www.algaebase.org
  20. Hakansson H, Chepurnov V (1999) A study of variation in valve morphology of the diatom Cyclotella meneghiniana in monoclonal cultures: effect of auxospore formation and different salinity conditions. Diatom Res 14:251–272CrossRefGoogle Scholar
  21. Hammer O, Harper DAT et al (2008) PAST Palaeontological Statistics, ver. 1.81, http://folk.uio.no/ohammer/past
  22. Hassan GS, Espinosa MA et al (2007) Dead diatom assemblages in surface sediments from a low impacted estuary: the Quequén Salado River, Argentina. Hydrobiologia 579:257–270CrossRefGoogle Scholar
  23. Hassan GS, Tietze E et al (2011) Problems and potentialities of using diatoms as paleoclimatic indicators in Central Argentina. In: Compton JC (ed) Diatoms: ecology and life cycle. Nova Science Publishers, New York, pp. 1–42Google Scholar
  24. Haworth E (1976) Two late-glacial (late Devensian) diatom assemblage profiles from northern Scotland. New Phytol 77:227–256CrossRefGoogle Scholar
  25. Isla F, Dondas A et al (2014) Sedimentología de las formaciones Irene y La Toma del Neógeno de la Cuenca de Claromecó, Buenos Aires. Geoacta 39:1–13Google Scholar
  26. Mackay AW, Jones VJ, Battarbee RW (2003) Approaches to Holocene climate reconstructions using diatoms. In: Mackay AW, Battarbee AW, Birks RW, Oldfield F (eds) Global change in the Holocene, pp 294–309Google Scholar
  27. Mackay AW, Bezrukova EV et al (2012) Aquatic ecosystem responses to Holocene climate change and biome development in boreal, central Asia. Quat Sci Rev 41:119–131CrossRefGoogle Scholar
  28. Mari F, Di Lello C, Huarte R et al (2015) Dataciones radiocarbónicas en la cuenca inferior del Río Quequén Salado, Provincia de Buenos Aires. Libro de resúmenes del VI Congreso Argentino de Cuaternario y Geomorfología, 8 al 12 de abril de 2015, Ushuaia. Tierra del Fuego, Argentina, p 43Google Scholar
  29. Marini MF, Piccolo MC (2000) El balance hídrico en la cuenca del río Quequén Salado, Argentina. Papeles de Geografía 31:39–53Google Scholar
  30. Marini MF, Piccolo MC (2004) Water quality for supplementary irrigation in the Quequén Salado River basin (Argentina). Papeles de Geografía 39:157–172Google Scholar
  31. Minchin PR (1987) Simulation of multidimensional community patterns: towards a comprehensive model. Vegetation 71:145–156Google Scholar
  32. Owen RB, Renaut RW et al (2004) Swamps, springs and diatoms: wetlands of the semi-arid Bogoria-Baringo Rift, Kenya. Hydrobiologia 518(1–3):59–78CrossRefGoogle Scholar
  33. Rabassa J, Ponce JF (2013) The Heinrich and Dansgaard-Oeschger climatic events during marine isotopic stage 3: searching for appropriate times for human colonization of the Americas. Quat Internat 299:94–105CrossRefGoogle Scholar
  34. Romero OE (2010) Changes in style and intensity of production in the Southeastern Atlantic over the last 70,000 yr. Mar Micropal 74:15–28CrossRefGoogle Scholar
  35. Schillizzi R, Gutierrez Tellez B et al (2006) Reconstrucción paleoambiental del Cuaternario en las barrancas del Río Quequén Salado, provincia de Buenos Aires, Argentina. III Congreso Argentino del Cuaternario y Geomorfología, Córdoba 10–13 octubre 2006, pp 649–658Google Scholar
  36. Trobajo Pujadas R (2007) Ecological analysis of periphytic diatoms in Mediterranean coastal wetlands (Empordá wetlands, NE Spain). In: Witkowski A (ed) Diatom Monographs 7:1–210Google Scholar
  37. Tuchman ML, Theriot E et al (1984) Effects of low-level salinity concentrations on the growth of Cyclotella meneghiniana Kütz. (Bacillariophyta). Arch Protistenk 128:319–326CrossRefGoogle Scholar
  38. Vos P, De Wolf H (1988) Methodological aspects of paleoecological diatom research in coastal areas of the Netherlands. Geol Mijnbouw 67:31–40Google Scholar
  39. Vos P, De Wolf H (1993) Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands; methodological aspects. Hydrobiologia 269(270):285–296CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto de Geología de Costas y del Cuaternario, Universidad Nacional de Mar del Plata, Instituto de Investigaciones Marinas y CosterasMar Del PlataArgentina
  2. 2.Centro de Investigaciones GeológicasLa PlataArgentina

Personalised recommendations