Advertisement

New Finding of Regular Echinoid Elements and Microfossils from the Pilmatué Member, Agrio Formation (Early Cretaceous), Neuquén Basin, Argentina

  • Andrea CaramésEmail author
  • Susana Adamonis
  • Andrea Concheyro
  • Mariano Remírez
Conference paper
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

This contribution presents new findings of regular echinoid elements from Upper Valanginian claystones, marlstones, and mudstones recovered near the base of the Pilmatué Member, Agrio Formation, in the Puerta Curaco and Área 3000 sections, Province of Neuquén. The recovered material includes isolated elements of Aristotle’s lantern, spines, ambulacral and interambulacral plates obtained from washed residues of micropaleontological samples. Their taxonomy covers several possible regular echinoids included within the Acroechinoidea. Considering the tubercles, pore-pairs, type of plates, and ambulacral plating style, these fragments could be assigned to the “diademataceans”. The spines and the rotulae cannot be attributed to a specific taxon because they are found in several different regular echinoid clades. The morphology of the hemi-pyramids is common to different regulars; this fact coupled with their poor preservation prevents a confident assignment to a higher taxonomic level. Wedge-shaped teeth, typical of irregular echinoids, cannot be linked to any of the other recovered remains. These fossiliferous horizons also contain a rare to very abundant assemblage of benthic foraminifera dominated by Epistomina loncochensis Ballent, few ostracods, and resistant calcareous nannofossils. The presence of E. loncochensis indicates quiet marine environments and scarcity of oxygen in the water/bottom interface. Claystone composition of the level rich in echinoid remains suggests a detrital input from shallower environments by means of currents, explaining the disarticulation of the echinoids.

Keywords

Echinoids Early Cretaceous Late Valanginian Agrio Formation Neuquén Basin Argentina 

Notes

Acknowledgements

Authors thank G. Cusminsky and E. Bernasconi for inviting us to present the results of our contribution to the Micropaleontological Symposium at the RACAPA 2016. We are very grateful to A. Kroh for his advice on the taxonomy of echinoids and especially for his valuable comments and suggestions; to J. Nebelsick and an anonymous reviewer whose constructive suggestions improved the paper; to Beatriz Aguirre-Urreta for ammonite determination; to M. Barbé and P. Álvarez for their great and patient help with laboratory preparation of samples. We also thank financial support to Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) PICT 2013–1413, Universidad Nacional de La Plata, and YPF S.A. This is the contribution R-236 of the Instituto de Estudios Andinos ‘Don Pablo Groeber’ (IDEAN-UBA-CONICET).

References

  1. Aguirre-Urreta MB, Rawson P (1997) The ammonite sequence in the Agrio formation (Lower Cretaceous). Neuquén Basin, Argentina. Geol Mag 134:449–458CrossRefGoogle Scholar
  2. Aguirre-Urreta MB, Rawson PF (2012) Lower Cretaceous ammonites from the Neuquén basin, Argentina: a new heteromorph fauna from the uppermost Agrio formation. Cret Res 35:208–216CrossRefGoogle Scholar
  3. Aguirre-Urreta MB, Rawson PF, Concheyro A et al (2005) Lower Cretaceous biostratigraphy of the Neuquén basin. In: Veiga G, Spalletti L, Howell JA, Schwarz E (eds) The Neuquén basin: a case study in sequence stratigraphy and basin dynamics. Geological Society of London, Special Publication, vol 252, pp 57–81Google Scholar
  4. Aguirre-Urreta MB, Morgues FA et al (2007) The Lower Cretaceous Chañarcillo and Neuquén Andean basins: ammonoid biostratigraphy and correlations. Geol J 42:143–173CrossRefGoogle Scholar
  5. Aguirre-Urreta MB, Schmitz M et al (2017) A high precision U-Pb radioisotopic age for the Agrio formation, Neuquén basin, Argentina: implications for the chronology of the Hauterivian stage. Cret Res 75:193–204CrossRefGoogle Scholar
  6. Applegate J, Bergen J (1988) Cretaceous calcareous nannofossils biostratigraphy of sediments recovered from the Galicia Margin, ODP Leg 103. In: Boillot AC, Winterer EL et al (eds) Initial Reports of the Ocean Drilling Project Program  vol 103, pp 293–348Google Scholar
  7. Ballent S, Concheyro A et al (2006) Bioestratigrafía y paleoambiente de la Formación Agrio (Cretácico Inferior), en la provincia de Mendoza, cuenca Neuquina Argentina. Rev Geol Chil 33:47–79Google Scholar
  8. Bown PR, Concheyro A (2004) Lower Cretaceous calcareous nannoplankton from the Neuquén basin, Argentina. Mar Micropaleontol 52:51–84CrossRefGoogle Scholar
  9. Bown PR, Young JR (1998) Techniques. In: Bown PR (ed) Calcareous Nannofossils Biostratigraphy. Kluwer Academic Press, Dordrecht, pp 16–28CrossRefGoogle Scholar
  10. Candia Carnevali MD, Bonasoro F et al (1991) Microstructure and mechanical design in the lanterno ossicles of the regular sea-urchin Paracentrotus lividus. A scanning electron microscope study. Bol Zool 58:1–42CrossRefGoogle Scholar
  11. Concheyro A, Lescano M et al (2009) Micropaleontología de la Formación Agrio (Cretácico inferior) en distintos sectores de la cuenca Neuquina, Argentina. Rev Asoc Geol Arg 65:342–361Google Scholar
  12. Edwards A (1963) A preparation technique for calcareous nannoplankton. Micropaleontology 9:103–104CrossRefGoogle Scholar
  13. Hanna GD, Church CC (1928) Freezing and thawing to disintegrate shales. J Paleontol 2:131Google Scholar
  14. Kidwell SM, Baumiller T (1990) Experimental disintegration of regular echinoids: roles of temperature, oxygen and decay thresholds. Paleobiology 16:247–271CrossRefGoogle Scholar
  15. Kier PM (1977) The poor fossil record of the regular echinoid. Paleobiology 3:168–174CrossRefGoogle Scholar
  16. Kier PM (1982) Rapid evolution in echinoids. Palaeontology 25:1–9Google Scholar
  17. Koutsoukos E, Hart MB (1990) Cretaceous foraminiferal morphogroup distribution patterns, palaeocommunities and trophic structures: a case study from the Sergipe basin, Brazil. Earth Environ Sci Trans R Soc Edinb 81:221–246CrossRefGoogle Scholar
  18. Kroh A (2003) The Echinodermata of the Langhian (Lower Badenian) of the Molasse zone and the northern Vienna basin (Austria). Ann Natur Mus Wien, Serie A:155–183Google Scholar
  19. Kroh A, Nebelsick JH (2010) Echinoderms and Oligo-Miocene carbonate systems: potential applications in sedimentology and environmental reconstruction. Int Assoc Sedimentol Spec Publ 42:201–228Google Scholar
  20. Kroh A, Smith AB (2010) The phylogeny and classification of post-Palaeozoic echinoids. J Syst Paleontol 8:147–212CrossRefGoogle Scholar
  21. Leanza HA, Hugo C (2001) Hoja Geológica Zapala, Hoja 3969–I, 1:250.000. Ins Geol Rec Min Bol 275:1–128Google Scholar
  22. Legarreta L, Gulisano CA (1989) Análisis estratigráfico secuencial de la cuenca Neuquina (Triásico Superior-Terciario Inferior). In: Chebli GA, Spalletti LA (eds) Cuencas sedimentarias argentinas, Ser Corr Geol 6:221–243Google Scholar
  23. Lescano M, Concheyro A (2014) Nanofósiles calcáreos de la Formación Agrio (Cretácico Inferior) en el sector sudoccidental de la Cuenca Neuquina, Argentina. Amegh 46:73–94Google Scholar
  24. Mancosu A, Nebelsick JH (2017) Ecomorphological and taphonomic gradients in clypeasteroid-dominated echinoid assemblages along a mixed siliciclastic-carbonate shelf from the early Miocene of northern Sardinia, Italy. Acta Palaeontol Pol 62:627–646Google Scholar
  25. Mani MS (2004) Progress in invertebrate zoology. Orient Blackswan, pp 1–388 Google Scholar
  26. Märkel K (1979) Structure and growth of the cidaroid socket-joint lantern of Aristotle compared to the Hinge-joint lanterns of non-cidaroid regular echinoids (Echinodermata, Echinoidea). Zoomorphologie 94:1–32CrossRefGoogle Scholar
  27. Nebelsick JH, Dynowski JF et al (2015) Echinoderms: hierarchically organized light weight skeletons. In: Hamm C (ed) Evolution of lightweight structures: analyses and technical applications, biologically-inspired systems, vol 6. Springer, Germany, pp 141–155Google Scholar
  28. Rodríguez DL (2007) Equinoideos mesozoicos de las cuencas andinas del centro-oeste de Argentina. Unpublished Ph.D. thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1–263 ppGoogle Scholar
  29. Roth P (1983) Jurassic and Lower Cretaceous calcareous nannofossils in the western North Atlantic (Site 534): biostratigraphy, preservation, and some observations on biogeography and paleoceanography. Init Rep Deep Sea Drilling Proj 76:587–621Google Scholar
  30. Sagasti G, Ballent S (2002) Caracterización microfaunística de una transgresión marina: Formación Agrio (Cretácico inferior), Cuenca Neuquina, Argentina. Geobios 35:721–734CrossRefGoogle Scholar
  31. Schwarz E, Spalletti LA et al (2016) First U-Pb SHRIMP age for the Pilmatué Member (Agrio Formation) of the Neuquén Basin, Argentina: implications for the Hauterivian lower boundary. Cret Res 58:223–233CrossRefGoogle Scholar
  32. Sissingh W (1977) Biostratigraphy of cretaceous calcareous nannoplankton. Geol Mij 56:37–65Google Scholar
  33. Smith AB (1978) A functional classification of the coronal pores of regular echinoids. Palaeontology 21:759–789Google Scholar
  34. Smith AB (1980) Stereom microstructure of the echinoid test. Special Papers in  Palaeontol 25:1–83Google Scholar
  35. Smith AB (1981) Implications of lantern morphology for the phylogeny of post-Palaeozoic echinoids. Palaeontology 24:779–801Google Scholar
  36. Smith AB, Kroh A (2011) The echinoid directory. World wide web electronic publication. http://www.nhm.ac.uk/research-curation/projects/echinoid-directory
  37. Spalletti LA, Veiga GD et al (2011) La Formación Agrio (Cretácico Temprano) en la Cuenca Neuquina. In: Leanza HA, Arregui C, Carbone O, Danielli JC, Vallés JM (eds) Geología y Recursos Naturales del Neuquén, Congreso Geológico Argentino, Relatorio, vol 18, pp 145–160Google Scholar
  38. Thuy B, Gale A et al (2011) A new echinoderm Lagerstätte from the Pliensbachian (Early Jurassic) of the French Ardennes. Swiss J Palaeontol 130:173–185CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrea Caramés
    • 1
    Email author
  • Susana Adamonis
    • 1
    • 2
  • Andrea Concheyro
    • 1
    • 2
    • 3
  • Mariano Remírez
    • 4
  1. 1.IDEAN—Instituto de Estudios Geológicos Andinos “Don Pablo Groeber”, CONICETCiudad Autónoma de Buenos AiresArgentina
  2. 2.Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  3. 3.Instituto Antártico ArgentinoSan Martín, Buenos AiresArgentina
  4. 4.Facultad de Ciencias Naturales y Museo, CIG—Centro de Investigaciones Geológicas, CONICETUniversidad Nacional de La PlataLa Plata, Buenos AiresArgentina

Personalised recommendations