Comparison-Based Attacks Against Noise-Free Fully Homomorphic Encryption Schemes

  • Alessandro Barenghi
  • Nicholas MainardiEmail author
  • Gerardo Pelosi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11149)


Homomorphic Encryption provides one of the most promising means to delegate computation to the cloud while retaining data confidentiality. We present a plaintext recovery attack against fully homomorphic schemes which have a polynomial time distinguisher for a given fixed plaintext, and rely on the capability of homomorphically compare a pair of encrypted integer values. We improve by a constant factor the computational complexity of an exhaustive search strategy, which is linear in the recovered plaintext value, and show that it significantly increases the number of recoverable plaintexts. We successfully validate our attack against two noise-free fully homomorphic encryption schemes, which fulfill the mentioned requisite and were claimed to be secure against plaintext recovery attacks.


FHE Noise-free schemes Plaintext recovery attack 



This work was supported in part by the EU Commission grant: “M2DC” (H2020 RIA) Grant agreement no. 688201.


  1. 1.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). Scholar
  2. 2.
    Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 45–64. Springer, Heidelberg (2013). Scholar
  3. 3.
    Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). Scholar
  4. 4.
    Brakerski, Z.: When homomorphism becomes a liability. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 143–161. Springer, Heidelberg (2013). Scholar
  5. 5.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS 2012, pp. 309–325. ACM (2012).
  6. 6.
    Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). Scholar
  7. 7.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) \( LWE\). SIAM J. Comput. 43(2), 831–871 (2014). Scholar
  8. 8.
    Çetin, G.S., Doröz, Y., Sunar, B., Martin, W.J.: An investigation of complex operations with word-size homomorphic encryption. ePrint Archive (1195) (2015).
  9. 9.
    Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). Scholar
  10. 10.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp. 169–178. ACM (2009).
  11. 11.
    Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval and Johansson [19], pp. 465–482. Scholar
  12. 12.
    Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). Scholar
  13. 13.
    Li, J., Wang, L.: Noise-free symmetric fully homomorphic encryption based on non-commutative rings. IACR ePrint Archive, Report 2015/641 (2015).
  14. 14.
    Kipnis, A., Hibshoosh, E.: Efficient methods for practical fully homomorphic symmetric-key encryption, randomization and verification. IACR ePrint Archive 2012, 637 (2012).
  15. 15.
    Liu, D.: Practical fully homomorphic encryption without noise reduction. IACR ePrint Archive 2015, 468 (2015).
  16. 16.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller. In: Pointcheval and Johansson [19], pp. 700–718. Scholar
  17. 17.
    Narumanchi, H., Goyal, D., Emmadi, N., Gauravaram, P.: Performance analysis of sorting of FHE data: integer-wise comparison vs bit-wise comparison. In: AINA 2017, pp. 902–908. IEEE CS (2017).
  18. 18.
    Nuida, K.: A simple framework for noise-free construction of fully homomorphic encryption from a special class of non-commutative groups. IACR ePrint Archive 2014, 97 (2014).
  19. 19.
    Pointcheval, D., Johansson, T. (eds.): EUROCRYPT 2012. LNCS, vol. 7237. Springer, Heidelberg (2012). Scholar
  20. 20.
    Rivest, R.L., Adleman, L., Dertouzos, M.L.: On Data Banks and Privacy Homomorphisms. Foundations of Secure Computation. Academia Press, Ghent (1978)Google Scholar
  21. 21.
    Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes Cryptogr. 71(1), 57–81 (2014). Scholar
  22. 22.
    Tsaban, B., Lifshitz, N.: Cryptanalysis of the MORE symmetric key fully homomorphic encryption scheme. J. Math. Cryptol. 9(2), 75–78 (2015). Scholar
  23. 23.
    Wang, Y., Malluhi, Q.M.: Privacy preserving computation in cloud using noise-free fully homomorphic encryption (FHE) schemes. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 301–323. Springer, Cham (2016). Scholar
  24. 24.
    Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS 1982, pp. 160–164. IEEE CS (1982).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Electronics, Information and Bioengineering – DEIBPolitecnico di MilanoMilanoItaly

Personalised recommendations