Skip to main content

A Gradient Flow Perspective on the Quantization Problem

  • Chapter
  • First Online:
PDE Models for Multi-Agent Phenomena

Part of the book series: Springer INdAM Series ((SINDAMS,volume 28))

  • 567 Accesses

Abstract

In this paper we review recent results by the author on the problem of quantization of measures. More precisely, we propose a dynamical approach, and we investigate it in dimensions 1 and 2. Moreover, we discuss a recent general result on the static problem on arbitrary Riemannian manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Equivalently known as Monge-Kantorovich distances; we shall use both terms interchangeably.

  2. 2.

    The vertices of the triangular lattice are the centres of a hexagonal tiling.

  3. 3.

    Note that this corresponds to the quantization of ρ ≡ 1 with d = r = 2 for N ≈ n 2 →.

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser Verlag, Basel (2008)

    Google Scholar 

  2. Bouchitté, G., Jimenez, C., Rajesh, M.: Asymptotique d’un problème de positionnement optimal. C. R. Math. Acad. Sci. Paris 335(10), 853–858 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bouchitté, G., Jimenez, C., Rajesh, M.: Asymptotic analysis of a class of optimal location problems. J. Math. Pures Appl. 95(4), 382–419 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bourne, D.P., Peletier, M. A., Theil, F.: Optimality of the triangular lattice for a particle system with Wasserstein interaction. Commun. Math. Phys. 329, 117–140 (2014)

    Article  MathSciNet  Google Scholar 

  5. Brancolini, A., Buttazzo, G., Santambrogio, F., Stepanov, E.: Long-term planning versus short-term planning in the asymptotical location problem. ESAIM Control Optim. Calc. Var. 15(3), 509–524 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bucklew, J., Wise, G.: Multidimensional asymptotic quantization theory with r-th power distortion measures. IEEE Inf. Theory 28(2), 239–247 (1982)

    Article  MathSciNet  Google Scholar 

  7. Buttazzo, G., Santambrogio, F.: A mass transportation model for the optimal planning of an urban region. SIAM Rev. 51, 593–610 (2009).

    Article  MathSciNet  Google Scholar 

  8. Caglioti, E., Golse, F., Iacobelli, M.: A gradient flow approach to quantization of measures. Math. Models Methods Appl. Sci. 25, 1845–1885 (2015)

    Article  MathSciNet  Google Scholar 

  9. Caglioti, E., Golse, F., Iacobelli, M.: Quantization of measures and gradient flows: a perturbative approach in the 2-dimensional case. Ann. Inst. H. Poincaré Anal. Non Linéaire 35(6), 1531–1555

    Google Scholar 

  10. Fejes Tóth, L.: Lagerungen in der Ebene, auf der Kugel und im Raum. Springer, Berlin (1953). 2nd ed. 1972

    Google Scholar 

  11. Fejes Tóth, G.: Astability criterion to the moment theorem. Stud. Sci. Math. Hungar. 38, 209–224 (2001)

    MATH  Google Scholar 

  12. Gersho, A., Gray, R.M.: Vector Quantization and Signal Processing. The Springer International Series in Engineering and Computer Science, vol. 1. Springer, New York (1992)

    Google Scholar 

  13. Gruber, P.M.: A short analytic proof of Fejes Tóth’s theorem on sums of moments. Aequationes Math. 58, 291–295 (1999)

    Article  MathSciNet  Google Scholar 

  14. Gruber, P.M.: Optimal configurations of finite sets in Riemannian 2-manifolds. Geom. Dedicata 84(1–3), 271–320 (2001)

    Article  MathSciNet  Google Scholar 

  15. Gruber, P.M.: Convex and Discrete Geometry. Springer, New York (2007)

    MATH  Google Scholar 

  16. Graf, S., Luschgy, H.: Foundations of Quantization for Probability Distributions. Lecture Notes in Mathematics, vol. 1730. Springer, Berlin (2000)

    Google Scholar 

  17. Iacobelli, M.: Asymptotic quantization for probability measures on Riemannian manifolds. ESAIM Control Optim. Calc. Var. 22(3), 770–785 (2016)

    Article  MathSciNet  Google Scholar 

  18. Iacobelli, M.: Asymptotic analysis for a very fast diffusion equation arising from the 1D quantization problem. Discrete Contin. Dyn. Syst. A (to appear)

    Google Scholar 

  19. Kloeckner, B.: Approximation by finitely supported measures. ESAIM Control Optim. Calc. Var. 18(2), 343–359 (2012)

    Article  MathSciNet  Google Scholar 

  20. Morgan, F., Bolton, R.: Hexagonal economic regions solve the location problem. Am. Math. Mon. 109(2), 165–172 (2002)

    Article  MathSciNet  Google Scholar 

  21. Mosconi, S., Tilli, P.: Γ-convergence for the irrigation problem. J. Conv. Anal. 12(1), 145–158 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Pagès, G., Pham, H., Printems, J.: Optimal quantization methods and applications to numerical problems in finance. In: Handbook on Numerical Methods in Finance, pp. 253–298. Birkhäuser, Boston (2004)

    Chapter  Google Scholar 

  23. Santambrogio, F.: Optimal Transport for Applied Mathematicians. Calculus of Variations, PDEs, and Modeling. Progress in Nonlinear Differential Equations and their Applications, vol. 87, xxvii+353 pp. Birkhäuser/Springer, Cham (2015)

    Chapter  Google Scholar 

Download references

Acknowledgements

The author would like to thank Megan Griffin-Pickering for her useful comments on a preliminary version of this paper and the L’Oréal Foundation for partially supporting this project by awarding the L’Oréal-UNESCO For Women in Science France fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikaela Iacobelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iacobelli, M. (2018). A Gradient Flow Perspective on the Quantization Problem. In: Cardaliaguet, P., Porretta, A., Salvarani, F. (eds) PDE Models for Multi-Agent Phenomena. Springer INdAM Series, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-01947-1_7

Download citation

Publish with us

Policies and ethics