Skip to main content

Numerical Investigation of the Frequency Influence on Soil Characteristics During Vibratory Driving of Tubular Piles

  • Conference paper
  • First Online:
Advances in Numerical Methods in Geotechnical Engineering (GeoMEast 2018)

Abstract

In offshore geotechnics, tubular piles are commonly used as the foundation system. Such piles are installed using vibratory or impact driving. The choice of the proper loading configuration plays an important role in the driving performance, especially in reaching the desired penetration depth. Numerical evaluation of such processes involves handling large material deformation, making it hard for the classical numerical methods to reach a reliable result after significant deformation. In addition, in case of the dynamic cyclic loading, the soil exhibits complex behavior which emphasizes the role of a suitable soil constitutive equation. In this study, a numerical model is developed and utilized to evaluate the effects of the frequency in the vibratory installation of tubular piles on the neighboring soil. The numerical model employs the robust Multi-Material Arbitrary Lagrangian-Eulerian (MMALE) method in conjunction with an advanced material model formulation based on the hypoplasticity concept, and is validated against an experiment done at TU Berlin. Subsequently, a parametric study is performed by applying six different frequencies between 12 and 30 Hz to the dynamic load. The resulting penetration depth, void ratio and the lateral stress distribution in the soil are compared and evaluated. It is concluded that an optimum frequency must be determined to reach the maximum penetration depth by using the same load magnitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgments

The authors are thankful for the partial financial support obtained from German Academic Exchange Service (DAAD) with grant number 91561676.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Daryaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Daryaei, R., Bakroon, M., Aubram, D., Rackwitz, F. (2019). Numerical Investigation of the Frequency Influence on Soil Characteristics During Vibratory Driving of Tubular Piles. In: Shehata, H., Desai, C. (eds) Advances in Numerical Methods in Geotechnical Engineering. GeoMEast 2018. Sustainable Civil Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-030-01926-6_3

Download citation

Publish with us

Policies and ethics