Skip to main content

Nondestructive Testing Technologies for Cultural Heritage: Overview

  • Chapter
  • First Online:
  • 747 Accesses

Abstract

In this chapter, the most used NDT geophysical technologies applied in the field of preventive archaeology and in the analysis of monumental heritage will be considered. Starting from the current state of the art, we will examine: Ground-Penetrating Radar (GPR) , electrical active (Electrical Resistivity Tomography—ERT; induced polarization—IP) and passive (Self-Potential—SP), and seismic sonic an ultrasonic methods. Here some important theoretical aspect will be explained as simply as possible, also using practical examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aitken MJ (1961) Physics and archaeology. Wiley, New York

    Google Scholar 

  • Alldred JC (1964) A fluxgate gradiometer for archaeological surveying. Archaeometry 7:14–19

    Article  Google Scholar 

  • Annan PA, Cosway WS, Redman JD (1991) Water table detection with ground penetrating radar. In: Society of Exploration Geophysicists annual meeting. Expanded abstracts, Houston, TX, USA, pp 494–496

    Google Scholar 

  • Atkinson RJC (1953) Field archaeology. Methuen, London

    Google Scholar 

  • Barone PM, Lauro SE, Mattei E, Pettinelli E (2010) Non-destructive technique to investigate an archaeological structure: a GPR survey in the Domus Aurea (Rome, Italy). In: IEEE proceedings of 13th international conference on ground penetrating radar, Lecce, 21–25 June, pp 250–254

    Google Scholar 

  • Batey RA (1987) Subsurface interface radar at Sepphoris, Israel. J Field Arch 14:1–8

    Google Scholar 

  • Bavusi M, Piscitelli S, Soldovieri F, Crocco L, Prisco G, Vallianatos F (2008) Exploitation of a microwave tomographic approach for GPR data processing collected at historical buildings of Chania (Crete, Greece). In: Lasaponara R, Masini H (eds) Advances in remote sensing for archaeology and cultural heritage management. Aracne, Rome, pp 151–154

    Google Scholar 

  • Becker H (1995) From nanotesla to picotesla—a new window for magnetic prospecting in archaeology. Archaeol Prospect 2:217–228

    Google Scholar 

  • Bevan BW, Kenyon J (1975) Ground-penetrating radar for historical Archaeology. MASCA Newslett 11:2–7

    Google Scholar 

  • Binda L, Saisia A, Tiraboschi C, Valle S, Colla C, Forde M (2003) Application of sonic and radar tests on the piers and walls of the Cathedral of Noto. Constr Build Mater 17:613–627

    Article  Google Scholar 

  • Binda L, Zanzi L, Lualdi M, Condoleo P (2004) The use of georadar to assess damage to a masonry bell tower in Cremona, Italy. NDT & E Int J 38:171–179

    Article  Google Scholar 

  • Burger HR (1997) Exploration geophysics of the shallow subsurface. Prentice–Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Calia A, Leucci G, Masini N, Matera L, Persico R, Sileo M (2012) Integrated prospecting in the Crypt of the Basilica of Saint Nicholas in Bari, Italy. J Geophys Eng 9:271–281. https://doi.org/10.1088/1742-2132/9/3/271

    Article  Google Scholar 

  • Campana S, Piro S (eds) (2008) Seeing the unseen geophysics and landscape archaeology. CRC Press

    Google Scholar 

  • Carrozzo MT, Leucci G, Negri S, Nuzzo L (2002) Applicazione di metodi elettrici, magnetici ed elettromagnetici per prospezioni archeologiche in area urbana: il caso di Muro Leccese (Lecce). Atti del 21° Convegno Nazionale GNGTS, Roma, 6–9 novembre 2002

    Google Scholar 

  • Carrozzo MT, Leucci G, Negri S, Nuzzo L (2003) GPR survey to understand the stratigraphy at the Roman ships archaeological site (Pisa, Italy). Archaeol Prospect 10(1):57–72

    Article  Google Scholar 

  • Cataldo R, Leucci G, Siviero S, Pagiotti R, Angelici P (2009) Analysis of deterioration in the crypt of the Abbey of Montecorona with integrated methods. J Geophys Eng 6:205–220. https://doi.org/10.1088/1742-2132/6/3/001

    Article  Google Scholar 

  • Cheeke D (2002) Fundamentals and applications of ultrasonic waves. CRC Press, pp 504

    Google Scholar 

  • Christensen NB, Sorensen KI (1994) Integrated use of electromagnetic methods for hydrogeological investigations. In: Proceedings of the symposium on the application of geophysics to engineering and environmental problems, Boston, Massachusetts, pp 163–176

    Google Scholar 

  • Clark AJ (1957) The transistor as the archaeologist’s latest tool. Illustrated London News 230:900–901

    Google Scholar 

  • Clark AJC (1990) Seeing beneath the soil. Batsford, London

    Book  Google Scholar 

  • Cleal RMJ, Walker KE, Montague R (1995) Stonehenge in its landscape: Twentieth century excavations. English Heritage, London

    Google Scholar 

  • Colani C (1966) A new type of locating device—I. The instruments. Archaeometry 9:3–8

    Article  Google Scholar 

  • Conyers LB, Goodman D (1997) Ground penetrating radar: an introduction for archaeologists. AltaMira Press, Walnut Creek

    Google Scholar 

  • Davis JL, Annan AP (1989) Ground-penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophys Prospect 37(5):531–551

    Article  Google Scholar 

  • de Groot SR, Mazur P (1983) Non-equilibrium thermodynamics. Dover Pubblications, New York

    Google Scholar 

  • De Domenico D, Giannino F, Leucci G, Bottari C (2006) Integrated geophysical surveys at the archaeological site of Tindari (Sicily, Italy). J Archaeol Sci 33:961–970

    Article  Google Scholar 

  • Delle Rose M, Leucci G (2010) Towards an integrated approach for characterisation of sinkhole hazards in urban environments: the unstable coast site of Casalabate, (Lecce, Italy). J Geophys Eng 7:143–154

    Article  Google Scholar 

  • Dey A, Morrison HF (1979) Resistivity modeling for arbitrarily shaped three-dimensional structures. Geophysics 44(4):753–780

    Article  Google Scholar 

  • Dobrin MB, Savit CH (1988) Introduction to geophysical prospecting. McGraw Hill

    Google Scholar 

  • Fox RC, Hohmann GW, Killpack TJ, Rijo L (1980) Topographic effects in resistivity and induced-polarization surveys. Geophysics 45(1):75–93

    Article  Google Scholar 

  • Fruhwirth RK, Schmoller R (1996) Some aspects on the estimation of electromagnetic wave velocities. In: Proceedings 6th international conference on ground penetrating radar (GPR’96), Sendai, Japan, 30 Sept–3 Oct, pp 135–138

    Google Scholar 

  • Gaffney C (2008) Detecting trends in the prediction of the buried past: a review of geophysical techniques in archaeology. Archaeometry 50:313–336

    Article  Google Scholar 

  • Gerardi E, Leucci G, Masini N, Persico R (2014) On-site non invasive diagnostics and monitoring for the study, conservation and restoration of historical built heritage. In: Malfitana D (ed) A decade for centuries, pp 127–130

    Google Scholar 

  • Grasso F, Leucci G, Masini N, Persico R (2011) GPR prospecting in Renaissance and Baroque monuments in Lecce (Southern Italy). In: Proceeding 6th international workshop on advanced ground penetrating radar IWAGPR, Aachen, Germany, June, pp 22–4

    Google Scholar 

  • Hara T, Sakayama T (1984) The applicability of ground probing radar to site investigations, OYO technical note, 38 pp

    Google Scholar 

  • Hesse A (1981) Realisation et experimentation d’un resistivimetre autotracte enregistreur ‘RATE’ (en Collaboration avec A Jolivet). Compte rendu de fin d’etudes d’une recherche finance par la DGRST, d’ecision d’aide no. 78 7 0247 AC Les Sciences de la Terre et les problemes d’Amenagements d’Urbanisme et de Construction 14-3-1981

    Google Scholar 

  • Kadioglu S, Kadioglu YK (2010) Picturing internal fractures of historical statues using ground penetrating radar method. Adv Geosci 24:23–34

    Article  Google Scholar 

  • Keary P, Brooks M (1991) An introduction to geophysical exploration. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Lázaro-Mancilla O, Gómez-Treviño E (1996) Synthetic radargrams from electrical conductivity and magnetic permeability variations. J Appl Geophys 34:283–290

    Article  Google Scholar 

  • Leckebusch J (2003) Ground-penetrating radar: a modern three-dimensional prospection method. Archaeol Prospect 10:213–241

    Article  Google Scholar 

  • Leucci G (1999) Prospezioni elettromagnetica e di sismica a riflessione: studio dell’influenza dei parametri strumentali sul rapporto segnale/rumore. Tesi di laurea in Fisica, Università degli Studi di Lecce

    Google Scholar 

  • Leucci G (2003) I metodi elettromagnetico impulsivo, elettrico e sismico tomografico a rifrazione per la risoluzione di problematiche ambientali: sviluppi metodologici e applicazioni. Tesi di Dottorato di Ricerca in Geofisica per l’Ambiente e il Territorio, Università degli Studi di Messina

    Google Scholar 

  • Leucci G (2006) Contribution of ground-penetrating radar and electrical resistivity tomography to identify the cavity and fractures under the main church in Botrugno (Lecce, Italy). J Archaeol Sci 33(9):1194–1204. https://doi.org/10.1016/j.jas.2005.12.009

    Article  Google Scholar 

  • Leucci G (2007) Ground Penetrating Radar: un introduzione per gli archeology. Aracne Editrice, Roma

    Google Scholar 

  • Leucci G (2015) Geofisica Applicata all’Archeologia e ai Beni Monumentali. Palermo, Dario Flaccovio Editore, p 368

    Google Scholar 

  • Leucci G, De Giorgi L (2010) Microgravimetric and ground penetrating radar geophysical methods to map the shallow karstic cavities network in a coastal area (Marina di Capilungo, Lecce, Italy). Explor Geophys 41:178–188

    Article  Google Scholar 

  • Leucci G, De Giorgi L (2015) 2D and 3D seismic measurements to evaluate the collapse risk of cave in soft carbonate rock. Cent Eur J Geosci 7(1):84–94. https://doi.org/10.1515/geo-2015-0006

  • Leucci G, De Giorgi L (2017) Il molino coratelli: indagini micro-geofisiche per la diagnostica strutturale. In I molini e l’industria molitoria in puglia. P 61–68

    Google Scholar 

  • Leucci G, Negri S (2006) Use of ground penetrating radar to subsurface archaeological features in an urban area. J Archaeol Sci 33:502–512. https://doi.org/10.1016/j.jas.2005.09.006

    Article  Google Scholar 

  • Leucci G, Quarta G (2016) The Cathedral of SS Annunziata in Castro (Lecce, southern Italy): Structural-Diagnostic surveys. Int J Innovative Sci Eng Technol 3(2):7–14

    Google Scholar 

  • Leucci G, Margiotta S, Negri S, Nuzzo L, Sansò P, Varola A (2003) Integrated geophysical, geological and geomorphological investigations for study the impact of agricultural activities on a complex karstic area. In: Proceedings del SAGEEP 2003 della Environmental and Engineering Geophysical Society, S Antonio, Texas, USA, 6–10 Apr 2003

    Google Scholar 

  • Leucci G, Margiotta S, Negri S (2004) Geological and geophysical investigations in karstic environment (Salice Salentino, Lecce, Italy). J Environ Eng Geophys (JEEG) 9:25–34

    Article  Google Scholar 

  • Leucci G, Greco F, De Giorgi L, Mauceri R (2007) 3D sesimic refraction tomography and electrical resistivity tomography survey in the Castle of Occhiolà (Sicily, Italy). J Archaeol Sci 34:233–242. https://doi.org/10.1016/j.jas.2006.04.010

    Article  Google Scholar 

  • Leucci G, Persico R, Quarta G (2010) GPR time lapse to quantify the subsidence degree in an urban area. In: Joint SIG workshop: urban-3D-radar-thermal remote sensing and developing countries, Ghent, Belgium, 22–24 Sept 2010

    Google Scholar 

  • Leucci G, Masini N, Persico R, Soldovieri F (2011) GPR and sonic tomography for structural restoration: the case of the Cathedral of Tricarico. J Geophys Eng 8:76–92. https://doi.org/10.1088/1742-2132/8/3/S08

    Article  Google Scholar 

  • Leucci G, Masini N, Persico R, Quarta G, Dolce C (2012a) A multidisciplinary analysis of the Crypt of the Holy Spirit in Monopoli (Southern Italy). Near Surf Geophys 10:1–8. https://doi.org/10.3997/1873-0604.2011032

    Article  Google Scholar 

  • Leucci G, D’Agostino D, Cataldo R (2012b) 3D high resolution GPR survey yields insights into the history of the ancient town of Lecce (south of Italy). Archaeol Prospect 19(3):157–165. https://doi.org/10.1002/arp.1423

    Article  Google Scholar 

  • Leucci G, Masini N, Persico R (2012c) Time–frequency analysis of GPR data to investigate the damage of monumental buildings. J Geophys Eng 9:S81–S91. https://doi.org/10.1088/1742-2132/9/4/S81

    Article  Google Scholar 

  • Leucci G, Parise M, Sammarco M, Scardozzi G (2016) The use of geophysical prospections to map ancient hydraulic works: the Triglio underground aqueduct (Apulia, southern Italy). Archaeol Prospect 23(3):195–211. https://doi.org/10.1002/arp.1541

    Article  Google Scholar 

  • Linford N (2006) The application of geophysical methods to archaeological prospection. Rep Prog Phys 69:2205–2257

    Article  Google Scholar 

  • Loke MH (1999) Time–lapse resistivity imaging inversion. In: Proceedings of the 5th meeting of the Environmental and Engineering Geophysical Society European Section, Em 1

    Google Scholar 

  • Loke MH (2001) Electrical imaging surveys for environmental and engineering studies. A practical guide to 2-D and 3-D surveys. RES2DINV Manual. IRIS Instruments. www.iris-instruments.com

  • Masini N, Sileo M, Leucci G, Soldovieri F, D’Antonia A, De Giorgi L, Pecci A, Scavone M (2017) Integrated in situ investigations for the restoration: the case of regio VIII in Pompeii. In: Masini N, Soldovieri F (eds) Sensing the past: from artifact to historical site. Springer, pp 557–586. https://doi.org/10.1007/978-3-31950518-3

  • Neubauer W (2001) Magnetische Prospektion in der Archaologie. Verlag der Osterreichischen Akademie der Wissenschaften, Wien

    Google Scholar 

  • Nuzzo L, Leucci G, Negri S (2009) GPR, ERT and magnetic investigations inside the Martyrium of St. Philip, Hierapolis, Turkey. Archaeol Prospect 16:1–16. https://doi.org/10.1002/arp.364

    Article  Google Scholar 

  • Overbeek J (1956) The Donnan equilibrium. Prog Biophys Biophys Chem 6:57–84

    Article  Google Scholar 

  • Pettinelli E (1993) Il georadar: teoria ed applicazioni. Tesi di dottorato di ricerca in Geofisica Applicata Università degli Studi La Sapienza di Roma. 361

    Google Scholar 

  • Pieraccini M, Luzi G, Noferini L, Mecatti D, Atzeni C (2004) Joint time frequency analysis of layered masonry structures using penetrating radar. IEEE Trans Geosci Remote Sens 42:309–317

    Article  Google Scholar 

  • Pieraccini M, Noferini L, Mecatti D, Atzeni C, Persico R, Soldovieri F (2006) Advanced processing techniques for step-frequency continuous-wave penetrating radar: the case study of ‘Palazzo Vecchio’ walls (Firenze, Italy) Res. Nondestruct Eval 17:71–83

    Article  Google Scholar 

  • Ralph EK, Morrison F, O’Brien D (1968) Archaeological surveying utilizing a high-sensitivity difference. Magnetometer Geoexplor 6:109–122

    Article  Google Scholar 

  • Ranalli D, Scozzafava M, Tallini M (2004) Ground penetrating radar investigations for restoration of historical building: the case study of Collemaggio Basilicata (L’Aquila, Italy). J Cult Heritage 5:91–99

    Article  Google Scholar 

  • Revil A (2002) Self-potential signals associated with variations of the hydraulic head during an infiltration experiment. Geophys Res Letters 29:7

    Google Scholar 

  • Reynolds JM (2011) An introduction to applied and environmental geophysics. Wiley, Chichester

    Google Scholar 

  • Roy A, Apparao A (1971) Depth of investigation in direct current methods. Geophysics 36:943–959

    Article  Google Scholar 

  • Roy K, Elliott M (1980) Resistivity and IP survey for delineating saline water and freshwater zones. Geoexploration 18:145–162

    Article  Google Scholar 

  • Sambuelli L, Calzoni C, Stocco S, Rege R (2010) Geophysical measurements on the occasion of the moving of an ancient Egyptian sculpture. In: Proceedings of GNGTS conference, Trieste, Italy, 16–19 Nov, pp 595–9

    Google Scholar 

  • Scollar I, Kruckeberg F (1966) Computer treatment of magnetic measurements from archaeological sites. Archaeometry 9:61–71

    Article  Google Scholar 

  • Scollar I, Tabbagh A, Hesse A, Herzog I (1990) Archaeological prospecting and remote sensing. Cambridge University Press, New York

    Google Scholar 

  • Sill WR (1983) Self‐potential modeling from primary flows. Geophysics 48(1):76–86

    Article  Google Scholar 

  • Stove GC, Addyman PV (1989) Ground probing impulse radar: an experiment in archaeological remote sensing at York. Antiquity 63:337–342

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University Press

    Google Scholar 

  • Toraldo di Francia G (1988) Onde elettromagnetiche, Zanichelli Editore, p 705; Turner G (1994) Constant Q attenuation of subsurface radar. Geophysics 59:1192–1200

    Google Scholar 

  • Trotzig G (1993) The new European Convention on the protection of the archaeological heritage. Antiquity 67(255):414–415

    Article  Google Scholar 

  • Turner G, Siggins AF (1994) Constant Q attenuation of subsurface radar pulses. Geophysics 59:1192–1200

    Article  Google Scholar 

  • Utsi E (2010) The shrine of Edward the Confessor: a study in multi-frequency GPR investigation. In: Proceedings of 13th international conference on ground penetrating radar, Lecce, Italy, June, pp 21–5

    Google Scholar 

  • Vaughan CJ (1986) Ground-penetrating radar survey used in archaeological investigations. Geophysics 51:595–604

    Article  Google Scholar 

  • Von Hippel AR (1954) Dielectrics and waves. Wiley, pp 284

    Google Scholar 

  • Zanzi L (2004) Appunti di sismica di esplorazione e georadar, CUSL, pp 181. ISBN: 8881323508

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Leucci .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leucci, G. (2019). Nondestructive Testing Technologies for Cultural Heritage: Overview. In: Nondestructive Testing for Archaeology and Cultural Heritage. Springer, Cham. https://doi.org/10.1007/978-3-030-01899-3_3

Download citation

Publish with us

Policies and ethics