Skip to main content

Walking Assistance of Subjects with Spinal Cord Injury with an Ankle Exoskeleton and Neuromuscular Controller

  • Conference paper
  • First Online:
Wearable Robotics: Challenges and Trends (WeRob 2018)

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 22))

Included in the following conference series:

  • 3664 Accesses

Abstract

This work was devoted to preliminary test the Achilles ankle exoskeleton and its NeuroMuscular Controller (NMC) with a test pilot affected by incomplete spinal cord injury. The customization of the robot controller, i.e. a subject-specific tailoring of the assistance level, was performed and a 10-session training to optimize human-robot interaction was finalized. Results demonstrated that controller tuning was in line with the functional clinical assessment. NMC adapted to the variable walking speed during the training and the test pilot was successfully trained in exploiting robotic support and also improved his performance in terms of walking speed and stability. After the training, a higher speed could also be achieved during free walking and hence a slight unexpected rehabilitation effect was evidenced.

Financial support for this work was provided by the European Union research program FP7-ICT (SYMBITRON grant #611626).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meijneke, C., van Dijk, W., van der Kooij, H.: Achilles: an autonomous lightweight ankle exoskeleton to provide push-off power. In: 5th IEEE RAS/EMBS BIOROB, Sao Paulo, pp. 918–923 (2014)

    Google Scholar 

  2. Wu, A.R., Dzeladini, F., Brug, T.J.H., Tamburella, F., Tagliamonte, N.L., van Asseldonk, E.H.F., van der Kooij, H., Ijspeert, A.J.: An adaptive neuromuscular controller for assistive lower-limb exoskeletons: a preliminary study on subjects with spinal cord injury, Front. Neurorob. 11, 30 (2017)

    Google Scholar 

  3. Geyer, H., Herr, H.: A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 263–273 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Tagliamonte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arquilla, M. et al. (2019). Walking Assistance of Subjects with Spinal Cord Injury with an Ankle Exoskeleton and Neuromuscular Controller. In: Carrozza, M., Micera, S., Pons, J. (eds) Wearable Robotics: Challenges and Trends. WeRob 2018. Biosystems & Biorobotics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-01887-0_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01887-0_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01886-3

  • Online ISBN: 978-3-030-01887-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics