Skip to main content

Leveraging Heterogeneous Data for Fake News Detection

  • Chapter
  • First Online:
Linking and Mining Heterogeneous and Multi-view Data

Part of the book series: Unsupervised and Semi-Supervised Learning ((UNSESUL))

Abstract

Nowadays, a plenty of social media platforms are available to exchange information rapidly. Such a rapid propagation and cumulation of information form a deluge, in which it is hard to believe all the pieces of information since it appears to be very realistic. In this context, characterizing and recognizing misinformation, especially, fake news, is a highly recommended computational task. News fabrication mostly happens through the textual and visual content comprised in the news article. People spreading fake news have been intentionally modifying the content of a news with some partially true information or use fully manipulated information, newly fabricated stories, etc., which could mislead others. Fake news characterization and detection are the computational studies that focus to get rid of the highly malicious news creation and propagation. The textual and visual content-related features, temporal and propagation patterns of the network, that use traditional and deep neural computations are the methods to identify fake news generation and spread. This chapter discusses the methods to leverage heterogeneous data to curb the fake news generation and propagation. We present an extensive review of the state-of-the-art fake news detection systems, in the context of different modalities emphasizing the content-based approaches including text and image modality and also discuss briefly the network, temporal, and knowledge base approaches. This study also extends to discuss the available datasets in this area, the open issues, and future directions of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.macquariedictionary.com.au/news/view/article/431/.

  2. 2.

    https://en.oxforddictionaries.com/word-of-the-year/word-of-the-year-2016.

  3. 3.

    http://blogs.channel4.com/factcheck/.

  4. 4.

    http://www.politifact.com/.

  5. 5.

    http://webarchive.nationalarchives.gov.uk/20120203152804/http://www.tate.org.uk/tateetc/issue8/erasurerevelation.htm.

  6. 6.

    https://www.snopes.com/fact-check/nepal-earthquake-photo/.

  7. 7.

    http://www.chinadaily.com.cn/china/2013-03/29/content_16357003.htm.

  8. 8.

    https://www.snopes.com/fact-check/7-headed-snake/.

  9. 9.

    http://news.yahoo.com/10-fake-photos-hurricane-sandy-075500934.html.

  10. 10.

    http://service.account.weibo.com/.

  11. 11.

    https://fullfact.org/.

  12. 12.

    http://factchecker.in/.

  13. 13.

    https://reporterslab.org/.

  14. 14.

    http://fiskkit.com/.

  15. 15.

    https://www.cs.ucsb.edu/~william/data/liar_dataset.zip.

  16. 16.

    https://sites.google.com/site/andreasvlachos/resources.

  17. 17.

    https://github.com/BuzzFeedNews/2016-10-facebook-fact-check.

  18. 18.

    https://www.kaggle.com/mrisdal/fake-news.

  19. 19.

    https://github.com/selfagency/bs-detector.

  20. 20.

    http://compsocial.github.io/CREDBANK-data/.

  21. 21.

    https://github.com/KaiDMML/FakeNewsNet.

  22. 22.

    https://github.com/FakeNewsChallenge/fnc-1.

  23. 23.

    https://snap.stanford.edu/data/higgs-twitter.html.

  24. 24.

    http://mklab.iti.gr/project/wild-web-tampered-image-dataset.

  25. 25.

    http://forensics.idealtest.org/.

  26. 26.

    http://www.ee.columbia.edu/ln/dvmm/downloads/authsplcuncmp/.

References

  1. Palen, L., Anderson, K.M., Mark, G., Martin, J., Sicker, D., Palmer, M., Grunwald, D.: A vision for technology-mediated support for public participation & assistance in mass emergencies & disasters. In: Proceedings of the 2010 ACM-BCS Visions of Computer Science Conference, p. 8. British Computer Society, Swindon (2010)

    Google Scholar 

  2. Palen, L., Vieweg, S.: The emergence of online widescale interaction in unexpected events: assistance, alliance & retreat. In: Proceedings Conference on Computer Supported Cooperative Work, pp. 117–126. ACM, New York (2008)

    Google Scholar 

  3. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web, pp. 851–860. ACM, New York (2010)

    Google Scholar 

  4. Sakaki, T., Toriumi, F., Matsuo, Y.: Tweet trend analysis in an emergency situation. In: Proceedings of the Special Workshop on Internet and Disasters, p. 3. ACM, New York (2011)

    Google Scholar 

  5. Cheong, F., Cheong, C.: Social media data mining: a social network analysis of tweets during the 2010–2011 Australian floods. In: Proceedings of PACIS, vol. 11, pp. 46–46 (2011)

    Google Scholar 

  6. Verma, S., Vieweg, S., Corvey, W.J., Palen, L., Martin, J.H., Palmer, M., Schram, A., Anderson, K.M.: Natural language processing to the rescue? extracting” situational awareness” tweets during mass emergency. In: Proceedings of ICWSM, Barcelona, pp. 385–392 (2011)

    Google Scholar 

  7. Vieweg, S., Hughes, A.L., Starbird, K., Palen, L.: Microblogging during two natural hazards events: what twitter may contribute to situational awareness. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1079–1088. ACM, New York (2010)

    Google Scholar 

  8. Søe, S.O.: Algorithmic detection of misinformation and disinformation: Gricean perspectives. J. Doc. 74(2), 309–332 (2018)

    Article  Google Scholar 

  9. Krishna Kumar, K.P., Geethakumari, G.: Detecting misinformation in online social networks using cognitive psychology. Human-Centric Comput. Inf. Sci. 4(1), 14 (2014)

    Article  Google Scholar 

  10. Tandoc, E.C. Jr., Lim, Z.W., Ling, R.: Defining fake news. Digit. Journalism 6(2), 137–153 (2018)

    Article  Google Scholar 

  11. Gelfert, A.: Fake news: a definition. Informal Logic 38(1), 84–117 (2018)

    Article  Google Scholar 

  12. Weir, W.: History’s greatest lies. Fair Winds, Beverly, MA (2009)

    Google Scholar 

  13. Dizikes, P.: http://news.mit.edu/2018/study-twitter-false-news-travels-faster-true-stories-0308. March 2018

  14. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)

    Article  Google Scholar 

  15. Willingham, A.J.: https://edition.cnn.com/2017/09/08/health/fake-images-posts-disaster-trnd/index.html. September 2017

  16. Gupta, A., Lamba, H., Kumaraguru, P., Joshi, A.: Faking Sandy: characterizing and identifying fake images on twitter during Hurricane Sandy. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 729–736. ACM, New York (2013)

    Google Scholar 

  17. Mendoza, M., Poblete, B., Castillo, C.: Twitter under crisis: Can we trust what we RT? In: Proceedings of the First Workshop on Social Media Analytics, pp. 71–79. ACM, New York (2010)

    Google Scholar 

  18. Xiaochi, Z.: Internet rumors and intercultural ethics-a case study of panic-stricken rush for salt in China and iodine pill in America after Japanese earthquake and tsunami. Stud. Lit. Lang. 4(2), 13 (2012)

    Google Scholar 

  19. Rapoza, K.: Can fake news impact the stock market? Forbes, 26 February 2017

    Google Scholar 

  20. Fernández-Luque, L., Bau, T.: Health and social media: perfect storm of information. Healthcare Inf. Res. 21(2), 67–73 (2015)

    Article  Google Scholar 

  21. Marcon, A.R., Murdoch, B., Caulfield, T.: Fake news portrayals of stem cells and stem cell research. Regen. Med. 12(7), 765–775 (2017)

    Article  Google Scholar 

  22. Starbird, K., Maddock, J., Orand, M., Achterman, P., Mason, R.M.: Rumors, false flags, and digital vigilantes: misinformation on twitter after the 2013 Boston marathon bombing. In: iConference 2014 Proceedings (2014)

    Google Scholar 

  23. Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ. Perspect. 31(2), 211–236 (2017)

    Article  Google Scholar 

  24. Jin, Z., Cao, J., Guo, H., Zhang, Y., Wang, Y., Luo, J.: Rumor detection on twitter pertaining to the 2016 US presidential election (2017). Preprint, arXiv:1701.06250

    Google Scholar 

  25. Shin, J., Jian, L., Driscoll, K., Bar, F.: Political rumoring on twitter during the 2012 US presidential election: rumor diffusion and correction. New Media Soc. 19(8), 1214–1235 (2017)

    Article  Google Scholar 

  26. Wilson, J.: Playing with politics: political fans and twitter faking in post-broadcast democracy. Convergence 17(4), 445–461 (2011)

    Article  Google Scholar 

  27. Giglietto, F., Iannelli, L., Rossi, L., Valeriani, A.: Fakes, news and the election: a new taxonomy for the study of misleading information within the hybrid media system (2016)

    Google Scholar 

  28. Guess, A., Nyhan, B., Reifler, J.: Selective exposure to misinformation: evidence from the consumption of fake news during the 2016 US presidential campaign (2018)

    Google Scholar 

  29. Kasprak, A.: https://www.snopes.com/fact-check/new-study-officially-declare-fluoride-neurotoxin/. April 2018

  30. Evon, D.: https://www.snopes.com/fact-check/did-woman-infect-deliberately-hiv/. April 2018

  31. Mikkelson, D.: https://www.snopes.com/fact-check/war-on-christmas-monument/. March 2018

  32. Jacobson, L.: http://www.politifact.com/truth-o-meter/statements/2018/apr/19/donald-trump/donald-trump-correct-about-size-us-trade-deficit-j/. April 2018

  33. Perez-Rosas, V., Kleinberg, B., Lefevre, A., Mihalcea, R.: Automatic detection of fake news (2017). Preprint, arXiv:1708.07104

    Google Scholar 

  34. Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., Stein, B.: A stylometric inquiry into hyperpartisan and fake news (2017). Preprint, arXiv:1702.05638

    Google Scholar 

  35. Newman, M.L., Pennebaker, J.W., Berry, D.S., Richards, J.M.: Lying words: predicting deception from linguistic styles. Personal. Soc. Psychol. Bull. 29(5), 665–675 (2003)

    Article  Google Scholar 

  36. Feng, S., Banerjee, R., Choi, Y.: Syntactic stylometry for deception detection. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pp. 171–175. Association for Computational Linguistics, Stroudsburg (2012)

    Google Scholar 

  37. Vlachos, A., Riedel, S.: Fact checking: task definition and dataset construction. In: Proceedings of the ACL Workshop on Language Technologies and Computational Social Science, pp. 18–22 (2014)

    Google Scholar 

  38. Wang, W.Y.: “Liar, liar pants on fire”: a new benchmark dataset for fake news detection (2017). Preprint, arXiv:1705.00648

    Google Scholar 

  39. Moschitti, A., Basili, R.: Complex linguistic features for text classification: a comprehensive study. In: European Conference on Information Retrieval, pp. 181–196. Springer, Berlin (2004)

    Google Scholar 

  40. Rubin, V., Conroy, N., Chen, Y., Cornwell, S.: Fake news or truth? Using satirical cues to detect potentially misleading news. In: Proceedings of the Second Workshop on Computational Approaches to Deception Detection, pp. 7–17 (2016)

    Google Scholar 

  41. Ott, M., Choi, Y., Cardie, C., Hancock, J.T.: Finding deceptive opinion spam by any stretch of the imagination. In: Proceedings of the 49th Annual Meeting: Human Language Technologies-Volume 1, pp. 309–319. ACL, Stroudsburg (2011)

    Google Scholar 

  42. Badaskar, S., Agarwal, S., Arora, S.: Identifying real or fake articles: towards better language modeling. In: Proceedings of the Third International Joint Conference on Natural Language Processing: Volume-II (2008)

    Google Scholar 

  43. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics (2003)

    Google Scholar 

  44. Toma, C.L., Hancock, J.T.: Reading between the lines: linguistic cues to deception in online dating profiles. In: Proceedings of the Conference on Computer Supported Cooperative Work, pp. 5–8. ACM, New York (2010)

    Google Scholar 

  45. Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic inquiry and word count. Technical Report, Southern Methodist University, Dallas, TX (1993)

    Google Scholar 

  46. Ott, M., Cardie, C., Hancock, J.T.: Negative deceptive opinion spam. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 497–501 (2013)

    Google Scholar 

  47. Afroz, S., Brennan, M., Greenstadt, R.: Detecting hoaxes, frauds, and deception in writing style online. In: Symposium on Security and Privacy (SP), pp. 461–475. IEEE, Washington (2012)

    Google Scholar 

  48. Zheng, R., Li, J., Chen, H., Huang, Z.: A framework for authorship identification of online messages: Writing-style features and classification techniques. J. Assoc. Inf. Sci. Technol. 57(3), 378–393 (2006)

    Article  Google Scholar 

  49. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013). Preprint, arXiv:1301.3781

    Google Scholar 

  50. Goldberg, Y., Levy, O.: word2vec explained: deriving Mikolov et al.’s negative-sampling word-embedding method (2014). Preprint, arXiv:1402.3722

    Google Scholar 

  51. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)

    Google Scholar 

  52. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the EMNLP, pp. 1532–1543 (2014)

    Google Scholar 

  53. Bhatt, G., Sharma, A., Sharma, S., Nagpal, A., Raman, B., Mittal, A.: On the benefit of combining neural, statistical and external features for fake news identification (2017). Preprint, arXiv:1712.03935

    Google Scholar 

  54. Chopra, S., Jain, S., Sholar, J.M.: Towards automatic identification of fake news: headline-article stance detection with LSTM attention models (2017)

    Google Scholar 

  55. Ruchansky, N., Seo, S., Liu, Y.: Csi: a hybrid deep model for fake news detection. In: Proceedings of the Conference on Information and Knowledge Management, pp. 797–806. ACM, New York (2017)

    Google Scholar 

  56. Chaudhry, Ali K., Baker, D., Thun-Hohenstein, P.: Stance detection for the fake news challenge: identifying textual relationships with deep neural nets. https://web.stanford.edu/class/cs224n/reports/2760230.pdf

  57. Singhania, S., Fernandez, N., Rao, S.: 3HAN: a deep neural network for fake news detection. In: International Conference on Neural Information Processing, pp. 572–581. Springer, Berlin (2017)

    Chapter  Google Scholar 

  58. Miller, K., Oswalt, A.: Fake news headline classification using neural networks with attention (2017)

    Google Scholar 

  59. Pfohl, S., Triebe, O., Legros, F.: Stance detection for the fake news challenge with attention and conditional encoding (2017)

    Google Scholar 

  60. Wu, L., Li, J., Hu, X., Liu, H.: Gleaning wisdom from the past: early detection of emerging rumors in social media. In: Proceedings of the International Conference on Data Mining, pp. 99–107. SIAM, Philadelphia (2017)

    Chapter  Google Scholar 

  61. Vuković, M., Pripužić, K., Belani, H.: An intelligent automatic hoax detection system. In: International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, pp. 318–325. Springer, Berlin (2009)

    Chapter  Google Scholar 

  62. Augenstein, I., Rocktäschel, T., Vlachos, A., Bontcheva, K.: Stance detection with bidirectional conditional encoding (2016). Preprint, arXiv:1606.05464

    Google Scholar 

  63. Burfoot, C., Baldwin, T.: Automatic satire detection: are you having a laugh? In: Proceedings of the IJCNLP Conference Short Papers, pp. 161–164. Association for Computational Linguistics, Stroudsburg (2009)

    Google Scholar 

  64. Mihalcea, R., Strapparava, C., Pulman, S.: Computational models for incongruity detection in humour. In: International Conference on Intelligent Text Processing and Computational Linguistics, pp. 364–374. Springer, Berlin (2010)

    Chapter  Google Scholar 

  65. Mihalcea, R., Pulman, S.: Characterizing humour: an exploration of features in humorous texts. In: International Conference on Intelligent Text Processing and Computational Linguistics, pp. 337–347. Springer, Berlin (2007)

    Chapter  Google Scholar 

  66. Reyes, A., Rosso, P.: On the difficulty of automatically detecting irony: beyond a simple case of negation. Knowl. Inf. Syst. 40(3), 595–614 (2014)

    Article  Google Scholar 

  67. Zhou, L., Burgoon, J.K., Nunamaker, J.F., Twitchell, D.: Automating linguistics-based cues for detecting deception in text-based asynchronous computer-mediated communications. Group Decis. Negot. 13(1), 81–106 (2004)

    Article  Google Scholar 

  68. Mukherjee, A., Venkataraman, V., Liu, B., Glance, N.: Fake review detection: classification and analysis of real and pseudo reviews. Technical Report UIC-CS-2013–03, University of Illinois at Chicago (2013)

    Google Scholar 

  69. Meenakshi Sundaram, A., Nandini, C.: ASRD: algorithm for spliced region detection in digital image forensics. In: Computer Science On-line Conference, pp. 87–95. Springer, Berlin (2017)

    Google Scholar 

  70. Chen, W., Shi, Y.Q., Su, W.: Image splicing detection using 2-d phase congruency and statistical moments of characteristic function. In: Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505, p. 65050R. International Society for Optics and Photonics, Leiden (2007)

    Google Scholar 

  71. He, Z., Sun, W., Lu, W., Lu, H.: Digital image splicing detection based on approximate run length. Pattern Recogn. Lett. 32(12), 1591–1597 (2011)

    Article  Google Scholar 

  72. Agarwal, S., Chand, S.: Image forgery detection using co-occurrence-based texture operator in frequency domain. In: Progress in Intelligent Computing Techniques: Theory, Practice, and Applications, pp. 117–122. Springer, Berlin (2018)

    Google Scholar 

  73. Abrahim, A.R., Rahim, M.S.M., Sulong, G.B.: Splicing image forgery identification based on artificial neural network approach and texture features. Clust. Comput. 1–14 (2018). https://doi.org/10.1007/s10586-017-1668-8

  74. Dong, J., Wang, W., Tan, T., Shi, Y.Q.: Run-length and edge statistics based approach for image splicing detection. In: International Workshop on Digital Watermarking, pp. 76–87. Springer, Berlin (2008)

    Chapter  Google Scholar 

  75. Li, J., Li, X., Yang, B., Sun, X.: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics Secur. 10(3), 507–518 (2015)

    Article  Google Scholar 

  76. Thirunavukkarasu, V., Satheesh Kumar, J., Chae, G.S., Kishorkumar, J.: Non-intrusive forensic detection method using DSWT with reduced feature set for copy-move image tampering. Wirel. Pers. Commun. 98(4), 3039–3057 (2018)

    Article  Google Scholar 

  77. Huang, Y., Lu, W., Sun, W., Long, D.: Improved DCT-based detection of copy-move forgery in images. Forensic Sci. Int. 206(1–3), 178–184 (2011)

    Article  Google Scholar 

  78. Mahmood, T., Mehmood, Z., Shah, M., Saba, T.: A robust technique for copy-move forgery detection and localization in digital images via stationary wavelet and discrete cosine transform. J. Vis. Commun. Image Represent. 53, 202–214 (2018)

    Article  Google Scholar 

  79. Al-Qershi, O.M., Khoo, B.E.: Comparison of matching methods for copy-move image forgery detection. In: 9th International Conference on Robotic, Vision, Signal Processing and Power Applications, pp. 209–218. Springer, Berlin (2017)

    Google Scholar 

  80. Sunil, K., Jagan, D., Shaktidev, M.: DCT-PCA based method for copy-move forgery detection. In: ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India-Vol II, pp. 577–583. Springer, Berlin (2014)

    Google Scholar 

  81. Bunk, J., Bappy, J.H., Mohammed, T.M., Nataraj, L., Flenner, A., Manjunath, B.S., Chandrasekaran, S., Roy-Chowdhury, A.K., Peterson, L.: Detection and localization of image forgeries using resampling features and deep learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1881–1889. IEEE, Washington (2017)

    Google Scholar 

  82. Flenner, A., Peterson, L., Bunk, J., Mohammed, T.M., Nataraj, L., Manjunath, B.S.: Resampling forgery detection using deep learning and a-contrario analysis (2018). Preprint, arXiv:1803.01711

    Google Scholar 

  83. Choi, H.-Y., Hyun, D.-K., Choi, S., Lee, H.-K.: Enhanced resampling detection based on image correlation of 3d stereoscopic images. EURASIP J. Image Video Process. 2017(1), 22 (2017)

    Article  Google Scholar 

  84. Peng, A., Wu, Y., Kang, X.: Revealing traces of image resampling and resampling antiforensics. Adv. Multimedia 2017 (2017). https://doi.org/10.1155/2017/7130491

    Article  Google Scholar 

  85. Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting traces of resampling. IEEE Trans. Signal Process. 53(2), 758–767 (2005)

    Article  MathSciNet  Google Scholar 

  86. Jin, Z., Cao, J., Zhang, Y., Zhou, J., Tian, Q.: Novel visual and statistical image features for microblogs news verification. IEEE Trans. Multimedia 19(3), 598–608 (2017)

    Article  Google Scholar 

  87. Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 675–684. ACM, New York (2011)

    Google Scholar 

  88. Kwon, S., Cha, M., Jung, K., Chen, W., Wang, Y.: Prominent features of rumor propagation in online social media. In: 2013 IEEE 13th International Conference on Data Mining (ICDM), pp. 1103–1108. IEEE, Washington (2013)

    Google Scholar 

  89. Wu, K., Yang, S., Zhu, K.Q.: False rumors detection on Sina Weibo by propagation structures. In: 2015 IEEE 31st International Conference on Data Engineering (ICDE), pp. 651–662. IEEE, Washington (2015)

    Google Scholar 

  90. Gupta, M., Zhao, P., Han, J.: Evaluating event credibility on twitter. In: Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 153–164. SIAM, Philadelphia (2012)

    Chapter  Google Scholar 

  91. Pasquini, C., Brunetta, C., Vinci, A.F., Conotter, V., Boato, G.: Towards the verification of image integrity in online news. In: 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6. IEEE, Washington (2015)

    Google Scholar 

  92. Hossain, M.S., Alhamid, M.F., Muhammad, G.: Collaborative analysis model for trending images on social networks. Futur. Gener. Comput. Syst. 86, 855–862 (2017)

    Article  Google Scholar 

  93. Jin, Z., Cao, J., Luo, J., Zhang, Y.: Image credibility analysis with effective domain transferred deep networks (2016). Preprint, arXiv:1611.05328

    Google Scholar 

  94. Zhang, S., Tian, Q., Hua, G., Huang, Q., Li, S.: Descriptive visual words and visual phrases for image applications. In: Proceedings of the 17th ACM International Conference on Multimedia, pp. 75–84. ACM, New York (2009)

    Google Scholar 

  95. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  96. Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y.: Detecting image splicing in the wild (web). In: 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6. IEEE, Washington (2015)

    Google Scholar 

  97. Lin, Z., He, J., Tang, X., Tang, C.-K.: Fast, automatic and fine-grained tampered jpeg image detection via DCT coefficient analysis. Pattern Recogn. 42(11), 2492–2501 (2009)

    Article  Google Scholar 

  98. Bianchi, T., De Rosa, A., Piva, A.: Improved DCT coefficient analysis for forgery localization in JPEG images. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2444–2447. IEEE, Washington (2011)

    Google Scholar 

  99. Ferrara, P., Bianchi, T., De Rosa, A., Piva, A.: Image forgery localization via fine-grained analysis of CFA artifacts. IEEE Trans. Inf. Forensics Secur. 7(5), 1566–1577 (2012)

    Article  Google Scholar 

  100. Bianchi, T., Piva, A.: Image forgery localization via block-grained analysis of JPEG artifacts. IEEE Trans. Inf. Forensics Secur. 7(3), 1003–1017 (2012)

    Article  Google Scholar 

  101. Mahdian, B., Saic, S.: Using noise inconsistencies for blind image forensics. Image Vis. Comput. 27(10), 1497–1503 (2009)

    Article  Google Scholar 

  102. Hsu, Y.-F., Chang, S.-F.: Detecting image splicing using geometry invariants and camera characteristics consistency. In: 2006 IEEE International Conference on Multimedia and Expo, pp. 549–552. IEEE, Washington (2006)

    Google Scholar 

  103. Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: a data mining perspective. ACM SIGKDD Explor. Newsl. 19(1), 22–36 (2017)

    Article  Google Scholar 

  104. Conroy, N.J., Rubin, V.L., Chen, Y.: Automatic deception detection: methods for finding fake news. Proc. Assoc. Inf. Sci. Technol. 52(1), 1–4 (2015)

    Article  Google Scholar 

  105. Kwon, S., Cha, M., Jung, K.: Rumor detection over varying time windows. PloS ONE 12(1), e0168344 (2017)

    Article  Google Scholar 

  106. Matsubara, Y., Sakurai, Y., Aditya Prakash, B., Li, L., Faloutsos, C.: Rise and fall patterns of information diffusion: model and implications. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 6–14. ACM, New York (2012)

    Google Scholar 

  107. Altered Dimensions. http://altereddimensions.net/2018/bizarre-7-foot-tall-creature-photographed-in-sante-fe-argentina. April 2018

  108. Evon, D.: https://www.snopes.com/fact-check/mysterious-creature-terrorizing-argentina/?utm_source=socialflow&utm_medium=social. April 2018

  109. Adair, B.: https://reporterslab.org/tag/international-fact-checking-network. June 2018

  110. Gingras, R.: https://blog.google/topics/journalism-news/labeling-fact-check-articles-google-news/. October 2016

  111. Brandtzaeg, P.B., Følstad, A.: Trust and distrust in online fact-checking services. Commun. ACM 60(9), 65–71 (2017)

    Article  Google Scholar 

  112. Guha, S.: Related fact checks: a tool for combating fake news (2017). Preprint, arXiv:1711.00715

    Google Scholar 

  113. Shao, C., Ciampaglia, G.L., Flammini, A., Menczer, F.: Hoaxy: a platform for tracking online misinformation. In: Proceedings of the 25th International Conference Companion on World Wide Web, pp. 745–750. International World Wide Web Conferences Steering Committee (2016)

    Google Scholar 

  114. Mosseri, A.: https://newsroom.fb.com/news/2016/12/news-feed-fyi-addressing-hoaxes-and-fake-news/. December 2016

  115. Tschiatschek, S., Singla, A., Rodriguez, M.G., Merchant, A., Krause, A.: Detecting fake news in social networks via crowdsourcing (2017). Preprint, arXiv:1711.09025

    Google Scholar 

  116. Kim, J., Tabibian, B., Oh, A., Schölkopf, B., Gomez-Rodriguez, M.: Leveraging the crowd to detect and reduce the spread of fake news and misinformation. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 324–332. ACM, New York (2018)

    Google Scholar 

  117. Ciampaglia, G.L., Shiralkar, P., Rocha, L.M., Bollen, J., Menczer, F., Flammini, A.: Computational fact checking from knowledge networks. PloS ONE 10(6), e0128193 (2015)

    Article  Google Scholar 

  118. Wu, Y., Agarwal, P.K., Li, C., Yang, J., Yu, C.: Toward computational fact-checking. Proc. VLDB Endowment 7(7), 589–600 (2014)

    Article  Google Scholar 

  119. Magdy, A., Wanas, N.: Web-based statistical fact checking of textual documents. In: Proceedings of the 2nd International Workshop on Search and Mining User-Generated Contents, pp. 103–110. ACM, New York (2010)

    Google Scholar 

  120. Jin, F., Dougherty, E., Saraf, P., Cao, Y., Ramakrishnan, N.: Epidemiological modeling of news and rumors on twitter. In: Proceedings of the 7th Workshop on Social Network Mining and Analysis, p. 8. ACM, New York (2013)

    Google Scholar 

  121. Tambuscio, M., Ruffo, G., Flammini, A., Menczer, F.: Fact-checking effect on viral hoaxes: a model of misinformation spread in social networks. In: Proceedings of the 24th International Conference on World Wide Web, pp. 977–982. ACM, New York (2015)

    Google Scholar 

  122. Nguyen, N.P., Yan, G., Thai, M.T., Eidenbenz, S.: Containment of misinformation spread in online social networks. In: Proceedings of the 4th Annual ACM Web Science Conference, pp. 213–222. ACM, New York (2012)

    Google Scholar 

  123. Mitra, T., Gilbert, E.: Credbank: a large-scale social media corpus with associated credibility annotations. In: ICWSM, pp. 258–267 (2015)

    Google Scholar 

  124. De Domenico, M., Lima, A., Mougel, P., Musolesi, M.: The anatomy of a scientific rumor. Sci. Rep. 3, 2980 (2013)

    Article  Google Scholar 

  125. Hsu, Y.-F., Chang, S.-F.: Detecting image splicing using geometry invariants and camera characteristics consistency. In: International Conference on Multimedia and Expo (2006)

    Google Scholar 

  126. Zarrella, G., Marsh, A.: Mitre at semeval-2016 task 6: transfer learning for stance detection (2016). Preprint, arXiv:1606.03784

    Google Scholar 

  127. Mohammad, S., Kiritchenko, S., Sobhani, P., Zhu, X., Cherry, C.: Semeval-2016 task 6: detecting stance in tweets. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 31–41 (2016)

    Google Scholar 

  128. Zubiaga, A., Aker, A., Bontcheva, K., Liakata, M., Procter, R.: Detection and resolution of rumours in social media: a survey (2017). Preprint, arXiv:1704.00656

    Google Scholar 

  129. Li, Y., Gao, J., Meng, C., Li, Q., Su, L., Zhao, B., Fan, W., Han, J.: A survey on truth discovery. ACM Sigkdd Explor. Newsl. 17(2), 1–16 (2016)

    Article  Google Scholar 

  130. Potthast, M., Köpsel, S., Stein, B., Hagen, M.: Clickbait detection. In: European Conference on Information Retrieval, pp. 810–817. Springer, Berlin (2016)

    Google Scholar 

  131. Hu, X., Tang, J., Zhang, Y., Liu, H.: Social spammer detection in microblogging. In: Proceedings of IJCAI, vol. 13, pp. 2633–2639 (2013)

    Google Scholar 

  132. Chen, Y., Conroy, N.J., Rubin, V.L.: Misleading online content: recognizing clickbait as false news. In: Proceedings of the 2015 ACM on Workshop on Multimodal Deception Detection, pp. 15–19. ACM, New York (2015)

    Google Scholar 

  133. Ferrara, E., Varol, O., Davis, C., Menczer, F., Flammini, A.: The rise of social bots. Commun. ACM 59(7), 96–104 (2016)

    Article  Google Scholar 

  134. Opitz, D.W., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)

    Article  Google Scholar 

  135. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21–45 (2006)

    Article  Google Scholar 

  136. Li, X., Rao, Y., Xie, H., Lau, R.Y.K., Yin, J., Wang, F.L.: Bootstrapping social emotion classification with semantically rich hybrid neural networks. IEEE Trans. Affect. Comput. 8(4), 428–442 (2017)

    Article  Google Scholar 

  137. Liao, L., He, X., Zhang, H., Chua, T.-S.: Attributed social network embedding (2017). Preprint, arXiv:1705.04969

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Lajish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anoop, K., Gangan, M.P., P, D., Lajish, V.L. (2019). Leveraging Heterogeneous Data for Fake News Detection. In: P, D., Jurek-Loughrey, A. (eds) Linking and Mining Heterogeneous and Multi-view Data. Unsupervised and Semi-Supervised Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-01872-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01872-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01871-9

  • Online ISBN: 978-3-030-01872-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics