Abstract
Nowadays, a plenty of social media platforms are available to exchange information rapidly. Such a rapid propagation and cumulation of information form a deluge, in which it is hard to believe all the pieces of information since it appears to be very realistic. In this context, characterizing and recognizing misinformation, especially, fake news, is a highly recommended computational task. News fabrication mostly happens through the textual and visual content comprised in the news article. People spreading fake news have been intentionally modifying the content of a news with some partially true information or use fully manipulated information, newly fabricated stories, etc., which could mislead others. Fake news characterization and detection are the computational studies that focus to get rid of the highly malicious news creation and propagation. The textual and visual content-related features, temporal and propagation patterns of the network, that use traditional and deep neural computations are the methods to identify fake news generation and spread. This chapter discusses the methods to leverage heterogeneous data to curb the fake news generation and propagation. We present an extensive review of the state-of-the-art fake news detection systems, in the context of different modalities emphasizing the content-based approaches including text and image modality and also discuss briefly the network, temporal, and knowledge base approaches. This study also extends to discuss the available datasets in this area, the open issues, and future directions of research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
References
Palen, L., Anderson, K.M., Mark, G., Martin, J., Sicker, D., Palmer, M., Grunwald, D.: A vision for technology-mediated support for public participation & assistance in mass emergencies & disasters. In: Proceedings of the 2010 ACM-BCS Visions of Computer Science Conference, p. 8. British Computer Society, Swindon (2010)
Palen, L., Vieweg, S.: The emergence of online widescale interaction in unexpected events: assistance, alliance & retreat. In: Proceedings Conference on Computer Supported Cooperative Work, pp. 117–126. ACM, New York (2008)
Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web, pp. 851–860. ACM, New York (2010)
Sakaki, T., Toriumi, F., Matsuo, Y.: Tweet trend analysis in an emergency situation. In: Proceedings of the Special Workshop on Internet and Disasters, p. 3. ACM, New York (2011)
Cheong, F., Cheong, C.: Social media data mining: a social network analysis of tweets during the 2010–2011 Australian floods. In: Proceedings of PACIS, vol. 11, pp. 46–46 (2011)
Verma, S., Vieweg, S., Corvey, W.J., Palen, L., Martin, J.H., Palmer, M., Schram, A., Anderson, K.M.: Natural language processing to the rescue? extracting” situational awareness” tweets during mass emergency. In: Proceedings of ICWSM, Barcelona, pp. 385–392 (2011)
Vieweg, S., Hughes, A.L., Starbird, K., Palen, L.: Microblogging during two natural hazards events: what twitter may contribute to situational awareness. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1079–1088. ACM, New York (2010)
Søe, S.O.: Algorithmic detection of misinformation and disinformation: Gricean perspectives. J. Doc. 74(2), 309–332 (2018)
Krishna Kumar, K.P., Geethakumari, G.: Detecting misinformation in online social networks using cognitive psychology. Human-Centric Comput. Inf. Sci. 4(1), 14 (2014)
Tandoc, E.C. Jr., Lim, Z.W., Ling, R.: Defining fake news. Digit. Journalism 6(2), 137–153 (2018)
Gelfert, A.: Fake news: a definition. Informal Logic 38(1), 84–117 (2018)
Weir, W.: History’s greatest lies. Fair Winds, Beverly, MA (2009)
Dizikes, P.: http://news.mit.edu/2018/study-twitter-false-news-travels-faster-true-stories-0308. March 2018
Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)
Willingham, A.J.: https://edition.cnn.com/2017/09/08/health/fake-images-posts-disaster-trnd/index.html. September 2017
Gupta, A., Lamba, H., Kumaraguru, P., Joshi, A.: Faking Sandy: characterizing and identifying fake images on twitter during Hurricane Sandy. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 729–736. ACM, New York (2013)
Mendoza, M., Poblete, B., Castillo, C.: Twitter under crisis: Can we trust what we RT? In: Proceedings of the First Workshop on Social Media Analytics, pp. 71–79. ACM, New York (2010)
Xiaochi, Z.: Internet rumors and intercultural ethics-a case study of panic-stricken rush for salt in China and iodine pill in America after Japanese earthquake and tsunami. Stud. Lit. Lang. 4(2), 13 (2012)
Rapoza, K.: Can fake news impact the stock market? Forbes, 26 February 2017
Fernández-Luque, L., Bau, T.: Health and social media: perfect storm of information. Healthcare Inf. Res. 21(2), 67–73 (2015)
Marcon, A.R., Murdoch, B., Caulfield, T.: Fake news portrayals of stem cells and stem cell research. Regen. Med. 12(7), 765–775 (2017)
Starbird, K., Maddock, J., Orand, M., Achterman, P., Mason, R.M.: Rumors, false flags, and digital vigilantes: misinformation on twitter after the 2013 Boston marathon bombing. In: iConference 2014 Proceedings (2014)
Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ. Perspect. 31(2), 211–236 (2017)
Jin, Z., Cao, J., Guo, H., Zhang, Y., Wang, Y., Luo, J.: Rumor detection on twitter pertaining to the 2016 US presidential election (2017). Preprint, arXiv:1701.06250
Shin, J., Jian, L., Driscoll, K., Bar, F.: Political rumoring on twitter during the 2012 US presidential election: rumor diffusion and correction. New Media Soc. 19(8), 1214–1235 (2017)
Wilson, J.: Playing with politics: political fans and twitter faking in post-broadcast democracy. Convergence 17(4), 445–461 (2011)
Giglietto, F., Iannelli, L., Rossi, L., Valeriani, A.: Fakes, news and the election: a new taxonomy for the study of misleading information within the hybrid media system (2016)
Guess, A., Nyhan, B., Reifler, J.: Selective exposure to misinformation: evidence from the consumption of fake news during the 2016 US presidential campaign (2018)
Kasprak, A.: https://www.snopes.com/fact-check/new-study-officially-declare-fluoride-neurotoxin/. April 2018
Evon, D.: https://www.snopes.com/fact-check/did-woman-infect-deliberately-hiv/. April 2018
Mikkelson, D.: https://www.snopes.com/fact-check/war-on-christmas-monument/. March 2018
Jacobson, L.: http://www.politifact.com/truth-o-meter/statements/2018/apr/19/donald-trump/donald-trump-correct-about-size-us-trade-deficit-j/. April 2018
Perez-Rosas, V., Kleinberg, B., Lefevre, A., Mihalcea, R.: Automatic detection of fake news (2017). Preprint, arXiv:1708.07104
Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., Stein, B.: A stylometric inquiry into hyperpartisan and fake news (2017). Preprint, arXiv:1702.05638
Newman, M.L., Pennebaker, J.W., Berry, D.S., Richards, J.M.: Lying words: predicting deception from linguistic styles. Personal. Soc. Psychol. Bull. 29(5), 665–675 (2003)
Feng, S., Banerjee, R., Choi, Y.: Syntactic stylometry for deception detection. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pp. 171–175. Association for Computational Linguistics, Stroudsburg (2012)
Vlachos, A., Riedel, S.: Fact checking: task definition and dataset construction. In: Proceedings of the ACL Workshop on Language Technologies and Computational Social Science, pp. 18–22 (2014)
Wang, W.Y.: “Liar, liar pants on fire”: a new benchmark dataset for fake news detection (2017). Preprint, arXiv:1705.00648
Moschitti, A., Basili, R.: Complex linguistic features for text classification: a comprehensive study. In: European Conference on Information Retrieval, pp. 181–196. Springer, Berlin (2004)
Rubin, V., Conroy, N., Chen, Y., Cornwell, S.: Fake news or truth? Using satirical cues to detect potentially misleading news. In: Proceedings of the Second Workshop on Computational Approaches to Deception Detection, pp. 7–17 (2016)
Ott, M., Choi, Y., Cardie, C., Hancock, J.T.: Finding deceptive opinion spam by any stretch of the imagination. In: Proceedings of the 49th Annual Meeting: Human Language Technologies-Volume 1, pp. 309–319. ACL, Stroudsburg (2011)
Badaskar, S., Agarwal, S., Arora, S.: Identifying real or fake articles: towards better language modeling. In: Proceedings of the Third International Joint Conference on Natural Language Processing: Volume-II (2008)
Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics (2003)
Toma, C.L., Hancock, J.T.: Reading between the lines: linguistic cues to deception in online dating profiles. In: Proceedings of the Conference on Computer Supported Cooperative Work, pp. 5–8. ACM, New York (2010)
Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic inquiry and word count. Technical Report, Southern Methodist University, Dallas, TX (1993)
Ott, M., Cardie, C., Hancock, J.T.: Negative deceptive opinion spam. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 497–501 (2013)
Afroz, S., Brennan, M., Greenstadt, R.: Detecting hoaxes, frauds, and deception in writing style online. In: Symposium on Security and Privacy (SP), pp. 461–475. IEEE, Washington (2012)
Zheng, R., Li, J., Chen, H., Huang, Z.: A framework for authorship identification of online messages: Writing-style features and classification techniques. J. Assoc. Inf. Sci. Technol. 57(3), 378–393 (2006)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013). Preprint, arXiv:1301.3781
Goldberg, Y., Levy, O.: word2vec explained: deriving Mikolov et al.’s negative-sampling word-embedding method (2014). Preprint, arXiv:1402.3722
Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)
Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the EMNLP, pp. 1532–1543 (2014)
Bhatt, G., Sharma, A., Sharma, S., Nagpal, A., Raman, B., Mittal, A.: On the benefit of combining neural, statistical and external features for fake news identification (2017). Preprint, arXiv:1712.03935
Chopra, S., Jain, S., Sholar, J.M.: Towards automatic identification of fake news: headline-article stance detection with LSTM attention models (2017)
Ruchansky, N., Seo, S., Liu, Y.: Csi: a hybrid deep model for fake news detection. In: Proceedings of the Conference on Information and Knowledge Management, pp. 797–806. ACM, New York (2017)
Chaudhry, Ali K., Baker, D., Thun-Hohenstein, P.: Stance detection for the fake news challenge: identifying textual relationships with deep neural nets. https://web.stanford.edu/class/cs224n/reports/2760230.pdf
Singhania, S., Fernandez, N., Rao, S.: 3HAN: a deep neural network for fake news detection. In: International Conference on Neural Information Processing, pp. 572–581. Springer, Berlin (2017)
Miller, K., Oswalt, A.: Fake news headline classification using neural networks with attention (2017)
Pfohl, S., Triebe, O., Legros, F.: Stance detection for the fake news challenge with attention and conditional encoding (2017)
Wu, L., Li, J., Hu, X., Liu, H.: Gleaning wisdom from the past: early detection of emerging rumors in social media. In: Proceedings of the International Conference on Data Mining, pp. 99–107. SIAM, Philadelphia (2017)
Vuković, M., Pripužić, K., Belani, H.: An intelligent automatic hoax detection system. In: International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, pp. 318–325. Springer, Berlin (2009)
Augenstein, I., Rocktäschel, T., Vlachos, A., Bontcheva, K.: Stance detection with bidirectional conditional encoding (2016). Preprint, arXiv:1606.05464
Burfoot, C., Baldwin, T.: Automatic satire detection: are you having a laugh? In: Proceedings of the IJCNLP Conference Short Papers, pp. 161–164. Association for Computational Linguistics, Stroudsburg (2009)
Mihalcea, R., Strapparava, C., Pulman, S.: Computational models for incongruity detection in humour. In: International Conference on Intelligent Text Processing and Computational Linguistics, pp. 364–374. Springer, Berlin (2010)
Mihalcea, R., Pulman, S.: Characterizing humour: an exploration of features in humorous texts. In: International Conference on Intelligent Text Processing and Computational Linguistics, pp. 337–347. Springer, Berlin (2007)
Reyes, A., Rosso, P.: On the difficulty of automatically detecting irony: beyond a simple case of negation. Knowl. Inf. Syst. 40(3), 595–614 (2014)
Zhou, L., Burgoon, J.K., Nunamaker, J.F., Twitchell, D.: Automating linguistics-based cues for detecting deception in text-based asynchronous computer-mediated communications. Group Decis. Negot. 13(1), 81–106 (2004)
Mukherjee, A., Venkataraman, V., Liu, B., Glance, N.: Fake review detection: classification and analysis of real and pseudo reviews. Technical Report UIC-CS-2013–03, University of Illinois at Chicago (2013)
Meenakshi Sundaram, A., Nandini, C.: ASRD: algorithm for spliced region detection in digital image forensics. In: Computer Science On-line Conference, pp. 87–95. Springer, Berlin (2017)
Chen, W., Shi, Y.Q., Su, W.: Image splicing detection using 2-d phase congruency and statistical moments of characteristic function. In: Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505, p. 65050R. International Society for Optics and Photonics, Leiden (2007)
He, Z., Sun, W., Lu, W., Lu, H.: Digital image splicing detection based on approximate run length. Pattern Recogn. Lett. 32(12), 1591–1597 (2011)
Agarwal, S., Chand, S.: Image forgery detection using co-occurrence-based texture operator in frequency domain. In: Progress in Intelligent Computing Techniques: Theory, Practice, and Applications, pp. 117–122. Springer, Berlin (2018)
Abrahim, A.R., Rahim, M.S.M., Sulong, G.B.: Splicing image forgery identification based on artificial neural network approach and texture features. Clust. Comput. 1–14 (2018). https://doi.org/10.1007/s10586-017-1668-8
Dong, J., Wang, W., Tan, T., Shi, Y.Q.: Run-length and edge statistics based approach for image splicing detection. In: International Workshop on Digital Watermarking, pp. 76–87. Springer, Berlin (2008)
Li, J., Li, X., Yang, B., Sun, X.: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics Secur. 10(3), 507–518 (2015)
Thirunavukkarasu, V., Satheesh Kumar, J., Chae, G.S., Kishorkumar, J.: Non-intrusive forensic detection method using DSWT with reduced feature set for copy-move image tampering. Wirel. Pers. Commun. 98(4), 3039–3057 (2018)
Huang, Y., Lu, W., Sun, W., Long, D.: Improved DCT-based detection of copy-move forgery in images. Forensic Sci. Int. 206(1–3), 178–184 (2011)
Mahmood, T., Mehmood, Z., Shah, M., Saba, T.: A robust technique for copy-move forgery detection and localization in digital images via stationary wavelet and discrete cosine transform. J. Vis. Commun. Image Represent. 53, 202–214 (2018)
Al-Qershi, O.M., Khoo, B.E.: Comparison of matching methods for copy-move image forgery detection. In: 9th International Conference on Robotic, Vision, Signal Processing and Power Applications, pp. 209–218. Springer, Berlin (2017)
Sunil, K., Jagan, D., Shaktidev, M.: DCT-PCA based method for copy-move forgery detection. In: ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India-Vol II, pp. 577–583. Springer, Berlin (2014)
Bunk, J., Bappy, J.H., Mohammed, T.M., Nataraj, L., Flenner, A., Manjunath, B.S., Chandrasekaran, S., Roy-Chowdhury, A.K., Peterson, L.: Detection and localization of image forgeries using resampling features and deep learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1881–1889. IEEE, Washington (2017)
Flenner, A., Peterson, L., Bunk, J., Mohammed, T.M., Nataraj, L., Manjunath, B.S.: Resampling forgery detection using deep learning and a-contrario analysis (2018). Preprint, arXiv:1803.01711
Choi, H.-Y., Hyun, D.-K., Choi, S., Lee, H.-K.: Enhanced resampling detection based on image correlation of 3d stereoscopic images. EURASIP J. Image Video Process. 2017(1), 22 (2017)
Peng, A., Wu, Y., Kang, X.: Revealing traces of image resampling and resampling antiforensics. Adv. Multimedia 2017 (2017). https://doi.org/10.1155/2017/7130491
Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting traces of resampling. IEEE Trans. Signal Process. 53(2), 758–767 (2005)
Jin, Z., Cao, J., Zhang, Y., Zhou, J., Tian, Q.: Novel visual and statistical image features for microblogs news verification. IEEE Trans. Multimedia 19(3), 598–608 (2017)
Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 675–684. ACM, New York (2011)
Kwon, S., Cha, M., Jung, K., Chen, W., Wang, Y.: Prominent features of rumor propagation in online social media. In: 2013 IEEE 13th International Conference on Data Mining (ICDM), pp. 1103–1108. IEEE, Washington (2013)
Wu, K., Yang, S., Zhu, K.Q.: False rumors detection on Sina Weibo by propagation structures. In: 2015 IEEE 31st International Conference on Data Engineering (ICDE), pp. 651–662. IEEE, Washington (2015)
Gupta, M., Zhao, P., Han, J.: Evaluating event credibility on twitter. In: Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 153–164. SIAM, Philadelphia (2012)
Pasquini, C., Brunetta, C., Vinci, A.F., Conotter, V., Boato, G.: Towards the verification of image integrity in online news. In: 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6. IEEE, Washington (2015)
Hossain, M.S., Alhamid, M.F., Muhammad, G.: Collaborative analysis model for trending images on social networks. Futur. Gener. Comput. Syst. 86, 855–862 (2017)
Jin, Z., Cao, J., Luo, J., Zhang, Y.: Image credibility analysis with effective domain transferred deep networks (2016). Preprint, arXiv:1611.05328
Zhang, S., Tian, Q., Hua, G., Huang, Q., Li, S.: Descriptive visual words and visual phrases for image applications. In: Proceedings of the 17th ACM International Conference on Multimedia, pp. 75–84. ACM, New York (2009)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y.: Detecting image splicing in the wild (web). In: 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6. IEEE, Washington (2015)
Lin, Z., He, J., Tang, X., Tang, C.-K.: Fast, automatic and fine-grained tampered jpeg image detection via DCT coefficient analysis. Pattern Recogn. 42(11), 2492–2501 (2009)
Bianchi, T., De Rosa, A., Piva, A.: Improved DCT coefficient analysis for forgery localization in JPEG images. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2444–2447. IEEE, Washington (2011)
Ferrara, P., Bianchi, T., De Rosa, A., Piva, A.: Image forgery localization via fine-grained analysis of CFA artifacts. IEEE Trans. Inf. Forensics Secur. 7(5), 1566–1577 (2012)
Bianchi, T., Piva, A.: Image forgery localization via block-grained analysis of JPEG artifacts. IEEE Trans. Inf. Forensics Secur. 7(3), 1003–1017 (2012)
Mahdian, B., Saic, S.: Using noise inconsistencies for blind image forensics. Image Vis. Comput. 27(10), 1497–1503 (2009)
Hsu, Y.-F., Chang, S.-F.: Detecting image splicing using geometry invariants and camera characteristics consistency. In: 2006 IEEE International Conference on Multimedia and Expo, pp. 549–552. IEEE, Washington (2006)
Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: a data mining perspective. ACM SIGKDD Explor. Newsl. 19(1), 22–36 (2017)
Conroy, N.J., Rubin, V.L., Chen, Y.: Automatic deception detection: methods for finding fake news. Proc. Assoc. Inf. Sci. Technol. 52(1), 1–4 (2015)
Kwon, S., Cha, M., Jung, K.: Rumor detection over varying time windows. PloS ONE 12(1), e0168344 (2017)
Matsubara, Y., Sakurai, Y., Aditya Prakash, B., Li, L., Faloutsos, C.: Rise and fall patterns of information diffusion: model and implications. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 6–14. ACM, New York (2012)
Altered Dimensions. http://altereddimensions.net/2018/bizarre-7-foot-tall-creature-photographed-in-sante-fe-argentina. April 2018
Evon, D.: https://www.snopes.com/fact-check/mysterious-creature-terrorizing-argentina/?utm_source=socialflow&utm_medium=social. April 2018
Adair, B.: https://reporterslab.org/tag/international-fact-checking-network. June 2018
Gingras, R.: https://blog.google/topics/journalism-news/labeling-fact-check-articles-google-news/. October 2016
Brandtzaeg, P.B., Følstad, A.: Trust and distrust in online fact-checking services. Commun. ACM 60(9), 65–71 (2017)
Guha, S.: Related fact checks: a tool for combating fake news (2017). Preprint, arXiv:1711.00715
Shao, C., Ciampaglia, G.L., Flammini, A., Menczer, F.: Hoaxy: a platform for tracking online misinformation. In: Proceedings of the 25th International Conference Companion on World Wide Web, pp. 745–750. International World Wide Web Conferences Steering Committee (2016)
Mosseri, A.: https://newsroom.fb.com/news/2016/12/news-feed-fyi-addressing-hoaxes-and-fake-news/. December 2016
Tschiatschek, S., Singla, A., Rodriguez, M.G., Merchant, A., Krause, A.: Detecting fake news in social networks via crowdsourcing (2017). Preprint, arXiv:1711.09025
Kim, J., Tabibian, B., Oh, A., Schölkopf, B., Gomez-Rodriguez, M.: Leveraging the crowd to detect and reduce the spread of fake news and misinformation. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 324–332. ACM, New York (2018)
Ciampaglia, G.L., Shiralkar, P., Rocha, L.M., Bollen, J., Menczer, F., Flammini, A.: Computational fact checking from knowledge networks. PloS ONE 10(6), e0128193 (2015)
Wu, Y., Agarwal, P.K., Li, C., Yang, J., Yu, C.: Toward computational fact-checking. Proc. VLDB Endowment 7(7), 589–600 (2014)
Magdy, A., Wanas, N.: Web-based statistical fact checking of textual documents. In: Proceedings of the 2nd International Workshop on Search and Mining User-Generated Contents, pp. 103–110. ACM, New York (2010)
Jin, F., Dougherty, E., Saraf, P., Cao, Y., Ramakrishnan, N.: Epidemiological modeling of news and rumors on twitter. In: Proceedings of the 7th Workshop on Social Network Mining and Analysis, p. 8. ACM, New York (2013)
Tambuscio, M., Ruffo, G., Flammini, A., Menczer, F.: Fact-checking effect on viral hoaxes: a model of misinformation spread in social networks. In: Proceedings of the 24th International Conference on World Wide Web, pp. 977–982. ACM, New York (2015)
Nguyen, N.P., Yan, G., Thai, M.T., Eidenbenz, S.: Containment of misinformation spread in online social networks. In: Proceedings of the 4th Annual ACM Web Science Conference, pp. 213–222. ACM, New York (2012)
Mitra, T., Gilbert, E.: Credbank: a large-scale social media corpus with associated credibility annotations. In: ICWSM, pp. 258–267 (2015)
De Domenico, M., Lima, A., Mougel, P., Musolesi, M.: The anatomy of a scientific rumor. Sci. Rep. 3, 2980 (2013)
Hsu, Y.-F., Chang, S.-F.: Detecting image splicing using geometry invariants and camera characteristics consistency. In: International Conference on Multimedia and Expo (2006)
Zarrella, G., Marsh, A.: Mitre at semeval-2016 task 6: transfer learning for stance detection (2016). Preprint, arXiv:1606.03784
Mohammad, S., Kiritchenko, S., Sobhani, P., Zhu, X., Cherry, C.: Semeval-2016 task 6: detecting stance in tweets. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 31–41 (2016)
Zubiaga, A., Aker, A., Bontcheva, K., Liakata, M., Procter, R.: Detection and resolution of rumours in social media: a survey (2017). Preprint, arXiv:1704.00656
Li, Y., Gao, J., Meng, C., Li, Q., Su, L., Zhao, B., Fan, W., Han, J.: A survey on truth discovery. ACM Sigkdd Explor. Newsl. 17(2), 1–16 (2016)
Potthast, M., Köpsel, S., Stein, B., Hagen, M.: Clickbait detection. In: European Conference on Information Retrieval, pp. 810–817. Springer, Berlin (2016)
Hu, X., Tang, J., Zhang, Y., Liu, H.: Social spammer detection in microblogging. In: Proceedings of IJCAI, vol. 13, pp. 2633–2639 (2013)
Chen, Y., Conroy, N.J., Rubin, V.L.: Misleading online content: recognizing clickbait as false news. In: Proceedings of the 2015 ACM on Workshop on Multimodal Deception Detection, pp. 15–19. ACM, New York (2015)
Ferrara, E., Varol, O., Davis, C., Menczer, F., Flammini, A.: The rise of social bots. Commun. ACM 59(7), 96–104 (2016)
Opitz, D.W., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)
Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21–45 (2006)
Li, X., Rao, Y., Xie, H., Lau, R.Y.K., Yin, J., Wang, F.L.: Bootstrapping social emotion classification with semantically rich hybrid neural networks. IEEE Trans. Affect. Comput. 8(4), 428–442 (2017)
Liao, L., He, X., Zhang, H., Chua, T.-S.: Attributed social network embedding (2017). Preprint, arXiv:1705.04969
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Anoop, K., Gangan, M.P., P, D., Lajish, V.L. (2019). Leveraging Heterogeneous Data for Fake News Detection. In: P, D., Jurek-Loughrey, A. (eds) Linking and Mining Heterogeneous and Multi-view Data. Unsupervised and Semi-Supervised Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-01872-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-01872-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01871-9
Online ISBN: 978-3-030-01872-6
eBook Packages: EngineeringEngineering (R0)