Skip to main content

Handling Multi-scale Data via Multi-target Learning for Wind Speed Forecasting

  • Conference paper
  • First Online:
Book cover Foundations of Intelligent Systems (ISMIS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11177))

Included in the following conference series:

Abstract

Wind speed forecasting is particularly important for wind farms due to cost-related issues, dispatch planning, and energy markets operations. This paper presents a multi-target learning method, in order to model historical wind speed data and yield accurate forecasts of the wind speed on the day-ahead (24 h) horizon. The proposed method is based on the analysis of historical data, which are represented at multiple scales in both space and time. Handling multi-scale data allows us to leverage the knowledge hidden in both the spatial and temporal variability of the shared information, in order to identify spatio-temporal aided patterns that contribute to yield accurate wind speed forecasts. The viability of the presented method is evaluated by considering benchmark data. Specifically, the empirical study shows that learning multi-scale historical data allows us to determine accurate wind speed forecasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Multi-dimensional representations of geographic space can be equally dealt.

  2. 2.

    The traditional multi-target predictive model \(f:\mathbf {X} \rightarrow \mathbf {Y}\) can be learned by neglecting information on the data variability.

  3. 3.

    Information on the wind speed variability is included in the learning setting as a constraint to improve the predictive ability of the forecasting model learned.

References

  1. Almeida, V., Gama, J.: Collaborative wind power forecast. In: Bouchachia, A. (ed.) ICAIS 2014. LNCS (LNAI), vol. 8779, pp. 162–171. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11298-5_17

    Chapter  Google Scholar 

  2. Ambach, D., Vetter,P.: Wind speed and power forecasting - a review and incorporating asymmetric loss. In: 2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO), pp. 115–123 (2016)

    Google Scholar 

  3. Appice, A., Džeroski, S.: Stepwise induction of multi-target model trees. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 502–509. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5_46

    Chapter  Google Scholar 

  4. Appice, A., Pravilovic, S., Lanza, A., Malerba, D.: Very short-term wind speed forecasting using spatio-temporal lazy learning. In: Japkowicz, N., Matwin, S. (eds.) DS 2015. LNCS (LNAI), vol. 9356, pp. 9–16. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24282-8_2

    Chapter  Google Scholar 

  5. Ceci, M., Corizzo, R., Fumarola, F., Malerba, D., Rashkovska, A.: Predictive modeling of PV energy production: how to set up the learning task for a better prediction? IEEE Trans. Ind. Inf. 13(3), 956–966 (2017)

    Article  Google Scholar 

  6. Hui, Z., Bin, L., Zhuo-qun, Z.: Short-term wind speed forecasting simulation research based on ARIMA-LSSVM combination method. In: ICMREE 2011, vol. 1, pp. 583–586 (2011)

    Google Scholar 

  7. Kavasseri, R.G., Seetharaman, K.: Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy 34(5), 1388–1393 (2009)

    Article  Google Scholar 

  8. Kocev, D., Vens, C., Struyf, J., Dzeroski, S.: Tree ensembles for predicting structured outputs. Pattern Recognit. 46(3), 817–833 (2013)

    Article  Google Scholar 

  9. Lange, M., Focken, U.: New developments in wind energy forecasting. In: 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1–8 (2008)

    Google Scholar 

  10. Negnevitsky, M., Mandal, P., Srivastava, A.K.: An overview of forecasting problems and techniques in power systems. In: 2009 IEEE Power Energy Society General Meeting, pp. 1–4 (2009)

    Google Scholar 

  11. Palomares-Salas, J., De la Rosa, J., Ramiro, J., Melgar, J., Aguera, A., Moreno, A.: Arima vs. neural networks for wind speed forecasting. In: IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, CIMSA 2009, pp. 129–133 (2009)

    Google Scholar 

  12. Pravilovic, S., Appice, A., Lanza, A., Malerba, D.: Mining cluster-based models of time series for wind power prediction. In: Greco, S., Picariello, A. (eds.) 22nd Italian Symposium on Advanced Database Systems, SEBD 2014, pp. 9–20 (2014)

    Google Scholar 

  13. Pravilovic, S., Appice, A., Lanza, A., Malerba, D.: Wind power forecasting using time series cluster analysis. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS (LNAI), vol. 8777, pp. 276–287. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11812-3_24

    Chapter  Google Scholar 

  14. Pravilovic, S., Appice, A., Malerba, D.: An Intelligent technique for forecasting spatially correlated time series. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS (LNAI), vol. 8249, pp. 457–468. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03524-6_39

    Chapter  Google Scholar 

  15. Pravilovic, S., Appice, A., Malerba, D.: Integrating cluster analysis to the ARIMA model for forecasting geosensor data. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502, pp. 234–243. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08326-1_24

    Chapter  Google Scholar 

  16. Pravilovic, S., Bilancia, M., Appice, A., Malerba, D.: Using multiple time series analysis for geosensor data forecasting. Inf. Sci. 380, 31–52 (2017)

    Article  Google Scholar 

  17. Santamara-Bonfil, G., Reyes-Ballesteros, A., Gershenson, C.: Wind speed forecasting for wind farms: a method based on support vector regression. Renewable Energy 85, 790–809 (2016)

    Article  Google Scholar 

  18. Shi, J., Qu, X., Zeng, S.: Short-term wind power generation forecasting: direct versus indirect arima-based approaches. Int. J. Green Energy 8(1), 100–112 (2011)

    Article  Google Scholar 

  19. Soman, S.S., Zareipour, H., Malik, O., Mandal, P.: A review of wind power and wind speed forecasting methods with different time horizons. In: North American Power Symposium 2010, pp. 1–8 (2010)

    Google Scholar 

  20. Stojanova, D., Ceci, M., Appice, A., Malerba, D., Dzeroski, S.: Dealing with spatial autocorrelation when learning predictive clustering trees. Ecol. Inf. 13, 22–39 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Enrico Laboragine for his support in developing the algorithm presented and running the experiments. This work is carried out in partial fulfillment of the research objectives of ATENEO Project 2014 on “Mining of network data” and ATENEO Project 2015 on“Models and Methods to Mine Complex and Large Data” funded by the University of Bari Aldo Moro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Appice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Appice, A., Lanza, A., Malerba, D. (2018). Handling Multi-scale Data via Multi-target Learning for Wind Speed Forecasting. In: Ceci, M., Japkowicz, N., Liu, J., Papadopoulos, G., Raś, Z. (eds) Foundations of Intelligent Systems. ISMIS 2018. Lecture Notes in Computer Science(), vol 11177. Springer, Cham. https://doi.org/10.1007/978-3-030-01851-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01851-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01850-4

  • Online ISBN: 978-3-030-01851-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics