Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 179 Accesses

Abstract

This chapter describes the measurement of the \(B ^0 \!\rightarrow D ^0 {\overline{D}{} ^0} K ^{*0} \) branching ratio using as reference decay mode \(B ^0 \!\rightarrow D ^{*-} D ^0 K ^+ \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this analysis we use only long track. In principle, upstream tracks could be added to maximise the yields in \(B ^0 \!\rightarrow D ^{*-} D ^0 K ^+ \) because of the softer momentum spectrum of \(\pi _{K^{*0}}\).

  2. 2.

    Note that also in the data driven method the same dependency is used in LHCb.

  3. 3.

    Pruning method is a technique in machine learning that reduces the size of decision trees by removing sections of the tree that provide little power to the classification of the instances. The goals of pruning are the reduction of the complexity in the final classifier and the achievement of a better predictive accuracy. This is done thanks to the reduction of over-fitting and removal of sections of a classifier that may be based on noisy or erroneous data.

  4. 4.

    The signed decay length of the D mesons is obtained after constraining the \(K^{*0}\) vertex in the DTF.

References

  1. BaBar, P. del Amo Sanchez et al., Measurement of the \(B\rightarrow \overline{D}^{(\ast )}D^{(\ast )}K\) branching fractions. Phys. Rev. D83, 032004 (2011). http://dx.doi.org/10.1103/PhysRevD.83.032004, arXiv:1011.3929

  2. Particle Data Group, C. Patrignani et al., Review of particle physics. Chin. Phys. C40(10) 100001 (2016). http://dx.doi.org/10.1088/1674-1137/40/10/100001

  3. LHCb, R. Aaij et al., Precision luminosity measurements at LHCb. JINST 9(12) P12005 (2014). http://dx.doi.org/10.1088/1748-0221/9/12/P12005, arXiv:1410.0149

  4. W.D. Hulsbergen, Decay chain fitting with a Kalman filter. Nucl. Instrum. Meth. A552, 566 (2005). http://dx.doi.org/10.1016/j.nima.2005.06.078, arXiv:physics/0503191

    Article  ADS  Google Scholar 

  5. A. Poluektov, Kernel density estimation of a multidimensional efficiency profile. JINST 10(02) P02011 (2015). http://dx.doi.org/10.1088/1748-0221/10/02/P02011, arXiv:1411.5528

    Article  ADS  Google Scholar 

  6. A. Hocker et al., TMVA - toolkit for multivariate data analysis. PoS ACAT, 040 (2007). arXiv:physics/0703039

  7. A. Hoecker et al., TMVA - toolkit for multivariate data analysis. Physics (2007), arXiv:physics/0703039

  8. P.C. Bhat, Multivariate analysis methods in particle physics. Ann. Rev. Nucl. Part. Sci. 61, 281 (2011). http://dx.doi.org/10.1146/annurev.nucl.012809.104427

    Article  ADS  Google Scholar 

  9. C. Bishop, Neural Network for Pattern Recognition (Oxford University Press, Oxford, 1955)

    Google Scholar 

  10. C.M. Bishop, Pattern Recognition and Machine Learning (Springer Science Business Media, New York, 2007)

    MATH  Google Scholar 

  11. V.N. Vapnik, Statistical Learning Theory

    Google Scholar 

  12. J. Friedman, T. Hastie, R. Tibshirani, The Elements of Statistical Learning: Data Mining, Inference, and Prediction

    Google Scholar 

  13. J. Friedman, L. Brieman, Classificaton and Regression Trees (Springer, New York, 2000)

    Google Scholar 

  14. R.E. Schapire, Y. Freund, A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sc. 55, 119 (1997). http://dx.doi.org/10.1006/jcss.1997.1504

  15. LHCb Collaboration, R. Aaij et al., Measurement of \(\sigma (pp \rightarrow b \bar{b} X)\) at \(\sqrt{s}=7~\rm {TeV}\) in the forward region. Phys. Lett. B694, 209 (2010). http://dx.doi.org/10.1016/j.physletb.2010.10.010, arXiv:1009.2731

  16. V.V. Gligorov, M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree. JINST 8, P02013 (2013). http://dx.doi.org/10.1088/1748-0221/8/02/P02013, arXiv:1210.6861

    Article  ADS  Google Scholar 

  17. T. Skwarnicki, A study of the radiative CASCADE transitions between the Upsilon-Prime and Upsilon resonances. Ph.D thesis, Cracow, INP (1986)

    Google Scholar 

  18. M. Pivk, F.R. Le Diberder, sPlot: A statistical tool to unfold data distributions. Nucl. Instrum. Meth. A555, 356 (2005). http://dx.doi.org/10.1016/j.nima.2005.08.106, arXiv:physics/0402083

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Quagliani .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quagliani, R. (2018). Measurement of the \(B ^0 \!\rightarrow D ^0 {\overline{D}{} ^0} K ^{*0} \) Branching Ratio. In: Study of Double Charm B Decays with the LHCb Experiment at CERN and Track Reconstruction for the LHCb Upgrade. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-01839-9_6

Download citation

Publish with us

Policies and ethics