Tikhova, J.: Development sabotage detectors for surveillance systems Macroscop. Perm State National Research University (2013). https://www.scienceforum.ru/2013/pdf/7653.pdf. Accessed 11 May 2018
Aksay, A., Temizel, A., Cetin, A.E.: Camera tamper detection using wavelet analysis for video surveillance. In: Proceedings of the 2007 IEEE Conference on Advanced Video and Signal Based Surveillance, London, UK, pp. 558–562 (2007)
Google Scholar
Mantini, P., Shah, S.K.: A signal detection theory approach for camera tamper detection. In Proceedings of the 14th IEEE International Conference on Advanced Video and Signal based Surveillance, Lecce, Italy (2017)
Google Scholar
Einecke, N., Gandhi, H., Deigmöller, J.: Detection of camera artifacts from camera images. In: IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), pp. 603–610 (2014)
Google Scholar
Gallen, R., Cord, A., Hautière, N., Aubert, D.: Towards night fog detection through use of in-vehicle multipurpose cameras. Intelligent Vehicles Symposium (IV). IEEE (2011)
Google Scholar
Miclea, R.-C., Silea, I.: Visibility detection in foggy environment. In: 20th International Conference on Control Systems and Computer Science (CSCS), pp. 959–964 (2015)
Google Scholar
Alami, S., Ezzine, A., Elhassouni, F.: Local fog detection based on saturation and RGB-correlation. In: 13th International Conference on Computer Graphics Imaging and Visualization (CGiV) (2016)
Google Scholar
Pavlic, M., Rigoll, G., Ilic, S.: Classification of images in fog and fog-free scenes for use in vehicles. In: Intelligent Vehicles Symposium (IV), pp. 481–486. IEEE (2013)
Google Scholar
Hautiere, N., Tarel, J.-P., Aubert, D.: Mitigation of visibility loss for advanced camera-based driver assistance. IEEE Trans. Intell. Transp. Syst. 11(2), 474–484 (2010)
CrossRef
Google Scholar
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
CrossRef
Google Scholar
Pertuz, S., Puig, D., Garcia, M.A.: Analysis of focus measure operators for shape-from-focus. Pattern Recognit. 46, 1415–1432 (2013)
CrossRef
Google Scholar
Sklearn.svm.LinearSVC. Linear Support Vector Classification. http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html. Accessed 11 May 2018
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: CatBoost: unbiased boosting with categorical features. arXiv:1706.09516v2 (2018)
Simonyan, K., Zisserman, A.: Very Deep Convolutions for Large-Scale Image Recognition. In: ICLR. arXiv:1409.1556 (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS 2012, vol. 1, pp. 1097–1105 (2012)
Google Scholar
Yudin, D., Knysh, A.: Vehicle recognition and its trajectory registration on the image sequence using deep convolutional neural network. In: The International Conference on Information and Digital Technologies, pp. 435–441 (2017)
Google Scholar
Kaiming, H., Xiangyu, Z., Shaoqing, R., Jian S.: Deep Residual Learning for Image Recognition. In: ECCV. arXiv:1512.03385 (2015)
Yudin, D., Zeno, B.: Event recognition on images by fine-tuning of deep neural networks. Adv. Intell. Syst. Comput. 679, 479–487 (2018)
CrossRef
Google Scholar
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: ECCV. arXiv:1512.00567 (2016)
DeepClassificationTool. Deep image classification tool based on Keras. https://github.com/yuddim/deepClassificationTool. Accessed 11 May 2018