Advertisement

Oral Nanotherapeutics for Cancer with Innovations in Lipid and Polymeric Nanoformulations

  • Alexander J. Donovan
  • Ying LiuEmail author
Chapter
Part of the Bioanalysis book series (BIOANALYSIS, volume 5)

Abstract

Lipid-based and polymeric nanotechnologies are poised to dramatically alter the landscape of treatment options for cancer and may hold unique potential for easily accessible, oral chemotherapy. A growing consensus points to nanoscale drug delivery systems as a promising therapeutic modality with enhanced efficacy and diminished side effects and with increasing evidence that these platforms can be engineered to facilitate transport of poorly bioavailable drug compounds and target neoplastic tissue with precision. Significant design and process challenges remain however. The emergence of oral chemotherapeutics in cancer treatment and the role lipid and polymer nanotechnologies play in its development are discussed in this chapter. Several recent research results provide rules of thumb for design and optimization of nanoparticles (i.e., physicochemical and surface properties) to achieve the goals of enhancing intestinal permeability, decreasing immunogenicity and extending circulation half-life, tumor targeting, and minimizing aggregation. Finally, characterization methods to assess drug release and pharmacokinetics will be examined, including dialysis systems, in vitro intestinal co-culture models, microfluidic artificial organs, and in vivo preclinical models.

Keywords

Aggregation Bioavailability Chemical permeation enhancer Dialysis systems Excipients Flash nanoprecipitation Freezing Drying Immunoliposome In vitro intestinal co-culture model Liposome Lipid nanocapsule Microfluidic artificial organs Mucoadhesion Mucopenetration Nanoprecipitation Nanostructured lipid carriers Nanotherapeutics Oral absorption Ostwald ripening Secondary crystallization Solid lipid nanocapsules Stealth liposome Surface design Transmucosal permeability Two-phase sink condition 

Notes

Acknowledgment

The research of nanoparticle design and production of Ying Liu is supported by NSF CMMI Nanomanufacturing Program (NSF CAREER 1350731).

References

  1. 1.
    Findlay, M., von Minckwitz, G., Wardley, A.: Effective oral chemotherapy for breast cancer: pillars of strength. Ann. Oncol. 19(2), 212–222 (2008).  https://doi.org/10.1093/annonc/mdm285CrossRefGoogle Scholar
  2. 2.
    Aisner, J.: Overview of the changing paradigm in cancer treatment: Oral chemotherapy. Am. J. Health Syst. Pharm. 64, S4–S7 (2007).  https://doi.org/10.2146/ajhp070035CrossRefGoogle Scholar
  3. 3.
    Lu, Y., Park, K.: Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int. J. Pharm. 453(1), 198–214 (2013).  https://doi.org/10.1016/j.ijpharm.2012.08.042CrossRefGoogle Scholar
  4. 4.
    Kinch, M.S.: An overview of FDA-approved biologics medicines. Drug Discov. Today. 20(4), 393–398 (2015).  https://doi.org/10.1016/j.drudis.2014.09.003CrossRefGoogle Scholar
  5. 5.
    Truong-Le, V., Lovalenti, P.M., Abdul-Fattah, A.M.: Stabilization challenges and formulation strategies associated with oral biologic drug delivery systems. Adv. Drug Deliv. Rev. 93, 95–108 (2015).  https://doi.org/10.1016/j.addr.2015.08.001CrossRefGoogle Scholar
  6. 6.
    Thanki, K., Gangwal, R.P., Sangamwar, A.T., Jain, S.: Oral delivery of anticancer drugs: Challenges and opportunities. J. Control. Release. 170(1), 15–40 (2013).  https://doi.org/10.1016/j.jconrel.2013.04.020CrossRefGoogle Scholar
  7. 7.
    Wu, P., Nielsen, T.E., Clausen, M.H.: Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discov. Today. 21(1), 5–10 (2016).  https://doi.org/10.1016/j.drudis.2015.07.008CrossRefGoogle Scholar
  8. 8.
    Yun, Y., Cho, Y.W., Park, K.: Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv. Drug Deliv. Rev. 65(6), 822–832 (2013).  https://doi.org/10.1016/j.addr.2012.10.007CrossRefGoogle Scholar
  9. 9.
    Cone, R.A.: Barrier properties of mucus. Adv. Drug Deliv. Rev. 61(2), 75–85 (2009).  https://doi.org/10.1016/j.addr.2008.09.008CrossRefGoogle Scholar
  10. 10.
    Bansil, R., Turner, B.S.: Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci. 11(2–3), 164–170 (2006).  https://doi.org/10.1016/j.cocis.2005.11.001CrossRefGoogle Scholar
  11. 11.
    Malingre, M.M., Richel, D.J., Beijnen, J.H., Rosing, H., Koopman, F.J., Huinink, W.W.T.B., Schot, M.E., Schellens, J.H.M.: Coadministration of cyclosporine strongly enhances the oral bioavailability of docetaxel. J. Clin. Oncol. 19(4), 1160–1166 (2001)CrossRefGoogle Scholar
  12. 12.
    Varma, M.V., Obach, R.S., Rotter, C., Miller, H.R., Chang, G., Steyn, S.J., El-Kattan, A., Troutman, M.D.: Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. J. Med. Chem. 53(3), 1098–1108 (2010).  https://doi.org/10.1021/jm901371vCrossRefGoogle Scholar
  13. 13.
    Jain, A.K., Swarnakar, N.K., Godugu, C., Singh, R.P., Jain, S.: The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials. 32(2), 503–515 (2011).  https://doi.org/10.1016/j.biomaterials.2010.09.037CrossRefGoogle Scholar
  14. 14.
    Van Cutsem, E., Twelves, C., Cassidy, J., Allman, D., Bajetta, E., Boyer, M., Bugat, R., Findlay, M., Frings, S., Jahn, M., McKendrick, J., Osterwalder, B., Perez-Manga, G., Rosso, R., Rougier, P., Schmiegel, W.H., Seitz, J.F., Thompson, P., Vieitez, J.M., Weitzel, C., Harper, P., Grp, X.C.C.S.: Oral capecitabine compared with intravenous fluorouracil plus leucovorin in patients with metastatic colorectal cancer: Results of a large phase III study. J. Clin. Oncol. 19(21), 4097–4106 (2001)CrossRefGoogle Scholar
  15. 15.
    Herbrink, M., Nuijen, B., Schellens, J.H.M., Beijnen, J.H.: Variability in bioavailability of small molecular tyrosine kinase inhibitors. Cancer Treat. Rev. 41(5), 412–422 (2015).  https://doi.org/10.1016/j.ctrv.2015.03.005CrossRefGoogle Scholar
  16. 16.
    Hu, X.Y., Huang, F., Szymusiak, M., Liu, Y., Wang, Z.J.: Curcumin attenuates opioid tolerance and dependence by inhibiting Ca2+/Calmodulin-Dependent Protein Kinase II alpha activity. J. Pharmacol. Exp. Ther. 352(3), 420–428 (2015).  https://doi.org/10.1124/jpet.114.219303CrossRefGoogle Scholar
  17. 17.
    Hu, X.Y., Huang, F., Szymusiak, M., Tian, X.B., Liu, Y., Wang, Z.J.: PLGA-Curcumin Attenuates Opioid-Induced Hyperalgesia and Inhibits Spinal CaMKII alpha. Plos One. 11(1), e0146393 (2016).  https://doi.org/10.1371/journal.pone.0146393CrossRefGoogle Scholar
  18. 18.
    Shen, H., Hu, X.Y., Szymusiak, M., Wang, Z.J., Liu, Y.: Orally administered nanocurcumin to attenuate morphine tolerance: comparison between negatively charged PLGA and partially and fully PEGylated nanoparticles. Mol. Pharm. 10(12), 4546–4551 (2013).  https://doi.org/10.1021/mp400358zCrossRefGoogle Scholar
  19. 19.
    Szymusiak, M., Hu, X.Y., Plata, P.A.L., Ciupinski, P., Wang, Z.J., Liu, Y.: Bioavailability of curcumin and curcumin glucuronide in the central nervous system of mice after oral delivery of nano-curcumin. Int. J. Pharm. 511(1), 415–423 (2016).  https://doi.org/10.1016/j.ijpharm.2016.07.027CrossRefGoogle Scholar
  20. 20.
    Banerjee, A.A., Shen, H., Hautman, M., Anwer, J., Hong, S., Kapetanovic, I.M., Liu, Y., Lyubimov, A.V.: Enhanced oral bioavailability of the hydrophobic chemopreventive agent (Sr13668) in Beagle Dogs. Curr. Pharm. Biotechnol. 14(4), 464–469 (2013)CrossRefGoogle Scholar
  21. 21.
    Shen, H., Banerjee, A.A., Mlynarska, P., Hautman, M., Hong, S., Kapetanovic, I.M., Lyubimov, A.V., Liu, Y.: Enhanced oral bioavailability of a cancer preventive agent (SR13668) by employing polymeric nanoparticles with high drug loading. J. Pharm. Sci. 101(10), 3877–3885 (2012).  https://doi.org/10.1002/jps.23269CrossRefGoogle Scholar
  22. 22.
    Pridgen, E.M., Alexis, F., Kuo, T.T., Levy-Nissenbaum, E., Karnik, R., Blumberg, R.S., Langer, R., Farokhzad, O.C.: Transepithelial transport of Fc-Targeted nanoparticles by the Neonatal Fc receptor for oral delivery. Sci. Transl. Med. 5(213), 213ra167 (2013).  https://doi.org/10.1126/scitranslmed.3007049CrossRefGoogle Scholar
  23. 23.
    Williams, A.C., Barry, B.W.: Penetration enhancers. Adv. Drug Deliv. Rev. 64, 128–137 (2012).  https://doi.org/10.1016/j.addr.2012.09.032CrossRefGoogle Scholar
  24. 24.
    Davis, M.E., Chen, Z., Shin, D.M.: Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7(9), 771–782 (2008).  https://doi.org/10.1038/nrd2614CrossRefGoogle Scholar
  25. 25.
    Torchilin, V.: Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 63(3), 131–135 (2011).  https://doi.org/10.1016/j.addr.2010.03.011CrossRefGoogle Scholar
  26. 26.
    Mamidi, R.N.V.S., Weng, S., Stellar, S., Wang, C., Yu, N., Huang, T., Tonelli, A.P., Kelley, M.F., Angiuoli, A., Fung, M.C.: Pharmacokinetics, efficacy and toxicity of different pegylated liposomal doxorubicin formulations in preclinical models: is a conventional bioequivalence approach sufficient to ensure therapeutic equivalence of pegylated liposomal doxorubicin products? Cancer Chemother. Pharmacol. 66(6), 1173–1184 (2010).  https://doi.org/10.1007/s00280-010-1406-xCrossRefGoogle Scholar
  27. 27.
    Shen, H., Hong, S.Y., Prud'homme, R.K., Liu, Y.: Self-assembling process of flash nanoprecipitation in a multi-inlet vortex mixer to produce drug-loaded polymeric nanoparticles. J. Nanopart. Res. 13(9), 4109–4120 (2011).  https://doi.org/10.1007/s11051-011-0354-7CrossRefGoogle Scholar
  28. 28.
    Sun, T.M., Zhang, Y.S., Pang, B., Hyun, D.C., Yang, M.X., Xia, Y.N.: Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl. 53(46), 12320–12364 (2014).  https://doi.org/10.1002/anie.201403036CrossRefGoogle Scholar
  29. 29.
    Parveen, S., Misra, R., Sahoo, S.K.: Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 8(2), 147–166 (2012).  https://doi.org/10.1016/j.nano.2011.05.016CrossRefGoogle Scholar
  30. 30.
    Ponchel, G., Montisci, M.J., Dembri, A., Durrer, C., Duchene, D.: Mucoadhesion of colloidal particulate systems in the gastro-intestinal tract. Eur. J. Pharm. Biopharm. 44(1), 25–31 (1997).  https://doi.org/10.1016/S0939-6411(97)00098-2CrossRefGoogle Scholar
  31. 31.
    Tang, B.C., Dawson, M., Lai, S.K., Wang, Y.Y., Suk, J.S., Yang, M., Zeitlin, P., Boyle, M.P., Fu, J., Hanes, J.: Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc. Natl. Acad. Sci. U. S. A. 106(46), 19268–19273 (2009).  https://doi.org/10.1073/pnas.0905998106CrossRefGoogle Scholar
  32. 32.
    Wang, Y.Y., Lai, S.K., Suk, J.S., Pace, A., Cone, R., Hanes, J.: Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “Slip” through the human mucus barrier. Angew Chem Int Ed Engl. 47(50), 9726–9729 (2008).  https://doi.org/10.1002/anie.200803526CrossRefGoogle Scholar
  33. 33.
    Allen, T.M., Cullis, P.R.: Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65(1), 36–48 (2013).  https://doi.org/10.1016/j.addr.2012.09.037CrossRefGoogle Scholar
  34. 34.
    Barenholz, Y.: Doxil (R) - The first FDA-approved nano-drug: lessons learned. J. Control. Release. 160(2), 117–134 (2012).  https://doi.org/10.1016/j.jconrel.2012.03.020CrossRefGoogle Scholar
  35. 35.
    Szebeni, J., Baranyi, L., Savay, S., Milosevits, J., Bunger, R., Laverman, P., Metselaar, J.M., Storm, G., Chanan-Khan, A., Liebes, L., Muggia, F.M., Cohen, R., Barenholz, Y., Alving, C.R.: Role of complement activation in hypersensitivity reactions to doxil and hynic PEG liposomes: experimental and clinical studies. J. Liposome Res. 12(1–2), 165–172 (2002).  https://doi.org/10.1081/LPR-120004790CrossRefGoogle Scholar
  36. 36.
    Adlermoore, J.: Ambisome targeting to fungal-infections. Bone Marrow Transplant. 14, S3–S7 (1994)Google Scholar
  37. 37.
    Rosenthal, E., Poizot-Martin, I., Saint-Marc, T., Spano, J.P., Cacoub, P., Grp, D.S.: Phase IV study of liposomal daunorubicin (DaunoXome) in AIDS-related Kaposi sarcoma. Am. J. Clin. Oncol. 25(1), 57–59 (2002).  https://doi.org/10.1097/00000421-200202000-00012CrossRefGoogle Scholar
  38. 38.
    Mayer, A.M.S., Glaser, K.B., Cuevas, C., Jacobs, R.S., Kem, W., Little, R.D., McIntosh, J.M., Newman, D.J., Potts, B.C., Shuster, D.E.: The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol. Sci. 31(6), 255–265 (2010).  https://doi.org/10.1016/j.tips.2010.02.005CrossRefGoogle Scholar
  39. 39.
    Gabizon, A., Shmeeda, H., Barenholz, Y.: Pharmacokinetics of pegylated liposomal doxorubicin - Review of animal and human studies. Clin. Pharmacokinet. 42(5), 419–436 (2003).  https://doi.org/10.2165/00003088-200342050-00002CrossRefGoogle Scholar
  40. 40.
    Grimaldi, N., Andrade, F., Segovia, N., Ferrer-Tasies, L., Sala, S., Veciana, J., Ventosa, N.: Lipid-based nanovesicles for nanomedicine. Chem. Soc. Rev. 45, 6520 (2016)CrossRefGoogle Scholar
  41. 41.
    Boulikas, T.: Clinical overview on Lipoplatin (TM): a successful liposomal formulation of cisplatin. Expert Opin. Investig. Drugs. 18(8), 1197–1218 (2009).  https://doi.org/10.1517/13543780903114168CrossRefGoogle Scholar
  42. 42.
    Silverman, J.A., Deitcher, S.R.: Marqibo (R) (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol. 71(3), 555–564 (2013).  https://doi.org/10.1007/s00280-012-2042-4CrossRefGoogle Scholar
  43. 43.
    Leonard, R.C.F., Williams, S., Tulpule, A., Levine, A.M., Oliveros, S.: Improving the therapeutic index of anthracycline chemotherapy: Focus on liposomal doxorubicin (Myocet (TM)). Breast. 18(4), 218–224 (2009).  https://doi.org/10.1016/j.breast.2009.05.004CrossRefGoogle Scholar
  44. 44.
    Schell, R.F., Sidone, B.J., Caron, W.P., Walsha, M.D., White, T.F., Zamboni, B.A., Ramanathan, R.K., Zamboni, W.C.: Meta-analysis of inter-patient pharmacokinetic variability of liposomal and non-liposomal anticancer agents. Nanomedicine. 10(1), 109–117 (2014).  https://doi.org/10.1016/j.nano.2013.07.005CrossRefGoogle Scholar
  45. 45.
    Wang, A.Z., Langer, R., Farokhzad, O.C.: Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 63(63), 185–198 (2012).  https://doi.org/10.1146/annurev-med-040210-162544CrossRefGoogle Scholar
  46. 46.
    Maruyama, K.: Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv. Drug Deliv. Rev. 63(3), 161–169 (2011).  https://doi.org/10.1016/j.addr.2010.09.003CrossRefGoogle Scholar
  47. 47.
    Torchilin, V.P.: Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4(2), 145–160 (2005).  https://doi.org/10.1038/nrd1632CrossRefGoogle Scholar
  48. 48.
    Kirpotin, D., Park, J.W., Hong, K., Zalipsky, S., Li, W.L., Carter, P., Benz, C.C., Papahadjopoulos, D.: Sterically stabilized Anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry. 36(1), 66–75 (1997).  https://doi.org/10.1021/bi962148uCrossRefGoogle Scholar
  49. 49.
    Maruyama, K., Ishida, O., Takizawa, T., Moribe, K.: Possibility of active targeting to tumor tissues with liposomes. Adv. Drug Deliv. Rev. 40(1–2), 89–102 (1999).  https://doi.org/10.1016/S0169-409x(99)00042-3CrossRefGoogle Scholar
  50. 50.
    Kumari, A., Yadav, S.K., Yadav, S.C.: Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces. 75(1), 1–18 (2010).  https://doi.org/10.1016/j.colsurfb.2009.09.001CrossRefGoogle Scholar
  51. 51.
    Bermudez, H., Brannan, A.K., Hammer, D.A., Bates, F.S., Discher, D.E.: Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules. 35(21), 8203–8208 (2002).  https://doi.org/10.1021/ma020669lCrossRefGoogle Scholar
  52. 52.
    Discher, D.E., Ahmed, F.: Polymersomes. Annu. Rev. Biomed. Eng. 8, 323–341 (2006).  https://doi.org/10.1146/annurev.bioeng.8.061505.095838CrossRefGoogle Scholar
  53. 53.
    Ensign, L.M., Cone, R., Hanes, J.: Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 64(6), 557–570 (2012).  https://doi.org/10.1016/j.addr.2011.12.009CrossRefGoogle Scholar
  54. 54.
    Muller, C., Perera, G., Konig, V., Bernkop-Schnurch, A.: Development and in vivo evaluation of papain-functionalized nanoparticles. Eur. J. Pharm. Biopharm. 87(1), 125–131 (2014).  https://doi.org/10.1016/j.ejpb.2013.12.012CrossRefGoogle Scholar
  55. 55.
    Tao, Y.Y., Lu, Y.F., Sun, Y.J., Gu, B., Lu, W.Y., Pan, J.: Development of mucoadhesive microspheres of acyclovir with enhanced bioavailability. Int. J. Pharm. 378(1–2), 30–36 (2009).  https://doi.org/10.1016/j.ijpharm.2009.05.025CrossRefGoogle Scholar
  56. 56.
    Pauletti, G.M., Gangwar, S., Knipp, G.T., Nerurkar, M.M., Okumu, F.W., Tamura, K., Siahaan, T.J., Borchardt, R.T.: Structural requirements for intestinal absorption of peptide drugs. J. Control. Release. 41(1–2), 3–17 (1996).  https://doi.org/10.1016/0168-3659(96)01352-1CrossRefGoogle Scholar
  57. 57.
    Bakhru, S.H., Furtado, S., Morello, A.P., Mathiowitz, E.: Oral delivery of proteins by biodegradable nanoparticles. Adv. Drug Deliv. Rev. 65(6), 811–821 (2013).  https://doi.org/10.1016/j.addr.2013.04.006CrossRefGoogle Scholar
  58. 58.
    Lai, S.K., O'Hanlon, D.E., Harrold, S., Man, S.T., Wang, Y.Y., Cone, R., Hanes, J.: Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl. Acad. Sci. U. S. A. 104(5), 1482–1487 (2007).  https://doi.org/10.1073/pnas.0608611104CrossRefGoogle Scholar
  59. 59.
    Obach, R.S., Baxter, J.G., Liston, T.E., Silber, B.M., Jones, B.C., MacIntyre, F., Rance, D.J., Wastall, P.: The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J. Pharmacol. Exp. Ther. 283(1), 46–58 (1997)Google Scholar
  60. 60.
    Amidon, G.L., Lennernas, H., Shah, V.P., Crison, J.R.: A theoretical basis for a biopharmaceutic drug classification - the correlation of in-Vitro drug product dissolution and in-Vivo bioavailability. Pharm. Res. 12(3), 413–420 (1995).  https://doi.org/10.1023/A:1016212804288CrossRefGoogle Scholar
  61. 61.
    Martinez, M.N., G L, A.: A mechanistic approach to understandingthe factors affecting drug absorption:a review of fundamentals. J. Clin. Pharmacol. 42, 620–643 (2002)CrossRefGoogle Scholar
  62. 62.
    des Rieux, A., Ragnarsson, E.G., Gullberg, E., Préat, V., Schneider, Y.-J., Artursson, P.: Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur. J. Pharm. Sci. 25(4), 455–465 (2005)CrossRefGoogle Scholar
  63. 63.
    des Rieux, A., Fievez, V., Théate, I., Mast, J., Préat, V., Schneider, Y.-J.: An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur. J. Pharm. Sci. 30(5), 380–391 (2007)CrossRefGoogle Scholar
  64. 64.
    Antunes, F., Andrade, F., Araújo, F., Ferreira, D., Sarmento, B.: Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur. J. Pharm. Biopharm. 83(3), 427–435 (2013)CrossRefGoogle Scholar
  65. 65.
    Modi, S., Anderson, B.D.: Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol. Pharm. 10(8), 3076–3089 (2013).  https://doi.org/10.1021/mp400154aCrossRefGoogle Scholar
  66. 66.
    Gupta, P.K., Hung, C.T., Perrier, D.G.: Quantitation of the Release of Doxorubicin from Colloidal Dosage Forms Using Dynamic Dialysis. J. Pharm. Sci. 76(2), 141–145 (1987).  https://doi.org/10.1002/jps.2600760211CrossRefGoogle Scholar
  67. 67.
    Leo, E., Cameroni, R., Forni, F.: Dynamic dialysis for the drug release evaluation from doxorubicin-gelatin nanoparticle conjugates. Int. J. Pharm. 180(1), 23–30 (1999)CrossRefGoogle Scholar
  68. 68.
    Mogollon, C.: In Vitro Release of Curcumin from Polymeric Nanoparticles Using Two-Phase System. University of Illinois at Chicago (2016)Google Scholar
  69. 69.
    Shah, P., Fritz, J.V., Glaab, E., Desai, M.S., Greenhalgh, K., Frachet, A., Niegowska, M., Estes, M., Jager, C., Seguin-Devaux, C., Zenhausern, F., Wilmes, P.: A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat. Commun. 7, 11535 (2016).  https://doi.org/10.1038/ncomms11535CrossRefGoogle Scholar
  70. 70.
    Eisenstein, M.: ARTIFICIAL ORGANS Honey, I shrunk the lungs. Nature. 519(7544), S16–S18 (2015)CrossRefGoogle Scholar
  71. 71.
    Golla, K., Bhaskar, C., Ahmed, F., Kondapi, A.K.: A Target-Specific Oral Formulation of Doxorubicin-Protein Nanoparticles: Efficacy and Safety in Hepatocellular Cancer. J. Cancer. 4(8), 644–652 (2013).  https://doi.org/10.7150/jca.7093CrossRefGoogle Scholar
  72. 72.
    Jain, S., Kumar, D., Swarnakar, N.K., Thanki, K.: Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel. Biomaterials. 33(28), 6758–6768 (2012).  https://doi.org/10.1016/j.biomaterials.2012.05.026CrossRefGoogle Scholar
  73. 73.
    Vong, L.B., Yoshitomi, T., Matsui, H., Nagasaki, Y.: Development of an oral nanotherapeutics using redox nanoparticles for treatment of colitis-associated colon cancer. Biomaterials. 55, 54–63 (2015).  https://doi.org/10.1016/j.biomaterials.2015.03.037CrossRefGoogle Scholar
  74. 74.
    Bisht, S., Feldmann, G., Koorstra, J.B.M., Mullendore, M., Alvarez, H., Karikari, C., Rudek, M.A., Lee, C.K., Maitra, A., Maitra, A.: In vivo characterization of a polymeric nanoparticle platform with potential oral drug delivery capabilities. Mol. Cancer Ther. 7(12), 3878–3888 (2008).  https://doi.org/10.1158/1535-7163.Mct-08-0476CrossRefGoogle Scholar
  75. 75.
    Qu, D., Wang, L.X., Liu, M., Shen, S.Y., Li, T., Liu, Y.P., Huang, M.M., Liu, C.Y., Chen, Y., Mo, R.: Oral Nanomedicine Based on Multicomponent Microemulsions for Drug-Resistant Breast Cancer Treatment. Biomacromolecules. 18(4), 1268–1280 (2017).  https://doi.org/10.1021/acs.biomac.7b00011CrossRefGoogle Scholar
  76. 76.
    Groo, A.C., Bossiere, M., Trichard, L., Legras, P., Benoit, J.P., Lagarce, F.: In vivo evaluation of paclitaxel-loaded lipid nanocapsules after intravenous and oral administration on resistant tumor. Nanomedicine. 10(4), 589–601 (2015).  https://doi.org/10.2217/nnm.14.124CrossRefGoogle Scholar
  77. 77.
    Wang, Y.C., Zhang, D.R., Liu, Z.P., Liu, G.P., Duan, C.X., Jia, L.J., Feng, F.F., Zhang, X.Y., Shi, Y.Q., Zhang, Q.: In vitro and in vivo evaluation of silybin nanosuspensions for oral and intravenous delivery. Nanotechnology. 21(15), 155104 (2010).  https://doi.org/10.1088/0957-4484/21/15/155104CrossRefGoogle Scholar
  78. 78.
    Attili-Qadri, S., Karra, N., Nemirovski, A., Schwob, O., Talmon, Y., Nassar, T., Benita, S.: Oral delivery system prolongs blood circulation of docetaxel nanocapsules via lymphatic absorption. Proc. Natl. Acad. Sci. U. S. A. 110(43), 17498–17503 (2013).  https://doi.org/10.1073/pnas.1313839110CrossRefGoogle Scholar
  79. 79.
    Hu, Q.L., Wu, M., Fang, C., Cheng, C.Y., Zhao, M.M., Fang, W.H., Chu, P.K., Ping, Y., Tang, G.P.: Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Lett. 15(4), 2732–2739 (2015).  https://doi.org/10.1021/acs.nanolett.5b00570CrossRefGoogle Scholar
  80. 80.
    Claus, B.L., Underwood, D.J.: Discovery informatics: its evolving role in drug discovery. Drug Discov. Today. 7(18), 957–966. doi: Pii S1359-6446(02)02433-9 (2002).  https://doi.org/10.1016/S1359-6446(02)02433-9CrossRefGoogle Scholar
  81. 81.
    Kaitin, K.I., DiMasi, J.A.: Pharmaceutical innovation in the 21st Century: new drug approvals in the First Decade, 2000-2009. Clin. Pharmacol. Ther. 89(2), 183–188 (2011).  https://doi.org/10.1038/clpt.2010.286CrossRefGoogle Scholar
  82. 82.
    Chaubal, M.V.: Application of formulation technologies in lead candidate selection and optimization. Drug Discov. Today. 9(14), 603–609. doi: Pii S1359-6446(04)03171-X (2004).  https://doi.org/10.1016/S1359-6446(04)03171-XCrossRefGoogle Scholar
  83. 83.
    Torchilin, V.P., Lukyanov, A.N.: Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov. Today. 8(6), 259–266. doi: Pii S1359-6446(03)02623-0 (2003).  https://doi.org/10.1016/S1359-6446(03)02623-0CrossRefGoogle Scholar
  84. 84.
    Allen, T.M., Cullis, P.R.: Drug delivery systems: Entering the mainstream. Science. 303(5665), 1818–1822 (2004).  https://doi.org/10.1126/science.1095833CrossRefGoogle Scholar
  85. 85.
    Sarmento, B., Martins, S., Ferreira, D., Souto, E.B.: Oral insulin delivery by means of solid lipid nanoparticles. Int. J. Nanomedicine. 2(4), 743–749 (2007)Google Scholar
  86. 86.
    Knop, K., Hoogenboom, R., Fischer, D., Schubert, U.S.: Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. Engl. 49(36), 6288–6308 (2010).  https://doi.org/10.1002/anie.200902672CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Biopharmaceutical SciencesUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations