Advertisement

Delivery of Cancer Nanotherapeutics

  • Bomy Lee Chung
  • Joseph Kaplinsky
  • Robert Langer
  • Nazila KamalyEmail author
Chapter
Part of the Bioanalysis book series (BIOANALYSIS, volume 5)

Abstract

Cancer nanotherapeutics comprise the main application of nanotechnology to healthcare and are administered intravenously for faster action and maximal bioavailability. As nanotherapeutics become more clinically established, a fundamental understanding of their interactions in vivo is necessary in order to better design these medicines to reach their target site in sufficient dose. The physicochemical properties of nanoparticles (e.g., size, shape, charge, and surface properties) determine their biological interactions in vivo. These properties, in addition to the tumor microenvironment, influence the dose of nanotherapeutics accumulating in tumors and within cancer cells. For instance, once injected, nanotherapeutics encounter multiple barriers in the body before they reach the tumor, after which they encounter cellular and intracellular obstacles. The route of administration is an important parameter for investigation, as the fraction of nanoparticles and therefore their therapeutic payload concentration at the disease site are consequently determined by barriers presented following intravenous or intraperitoneal administration. In this chapter, we aim to provide an overview of the different delivery methods used for clinical administration of cancer nanotherapeutics and discuss biological barriers to their delivery and how these could be overcome. This knowledge can aid in the better design of nanotherapeutics, with a focus on injectable formulations.

Keywords

Cancer Tumors Oncology Nanotherapeutics Nanomedicine Nanoparticle Delivery route Intravenous Intraperitoneal Administration route Protein corona Tumor microenvironment Physicochemical properties Mononuclear phagocytic system Polymeric nanoparticles Liposomes Chemotherapy Biological barriers Opsonins Enhanced permeation and retention effect EPR Ligands Pharmacokinetics Biodistribution Clearance 

Notes

Acknowledgment

N.K. acknowledges support from the Lundbeck Foundation, Denmark.

References

  1. 1.
    Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R.: Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2(12), 751–760 (2007).  https://doi.org/10.1038/nnano.2007.387CrossRefGoogle Scholar
  2. 2.
    Bertrand, N., Wu, J., Xu, X., Kamaly, N., Farokhzad, O.C.: Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014).  https://doi.org/10.1016/j.addr.2013.11.009CrossRefGoogle Scholar
  3. 3.
    Farokhzad, O.C., Langer, R.: Impact of nanotechnology on drug delivery. ACS Nano. 3(1), 16–20 (2009).  https://doi.org/10.1021/nn900002mCrossRefGoogle Scholar
  4. 4.
    Wang, A.Z., Langer, R., Farokhzad, O.C.: Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 63, 185–198 (2012).  https://doi.org/10.1146/annurev-med-040210-162544CrossRefGoogle Scholar
  5. 5.
    Heath, J.R., Davis, M.E.: Nanotechnology and cancer. Annu. Rev. Med. 59, 251–265 (2008).  https://doi.org/10.1146/annurev.med.59.061506.185523CrossRefGoogle Scholar
  6. 6.
    Davis, M.E., Chen, Z.G., Shin, D.M.: Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7(9), 771–782 (2008).  https://doi.org/10.1038/nrd2614CrossRefGoogle Scholar
  7. 7.
    Shi, J., Xiao, Z., Kamaly, N., Farokhzad, O.C.: Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc. Chem. Res. 44(10), 1123–1134 (2011).  https://doi.org/10.1021/ar200054nCrossRefGoogle Scholar
  8. 8.
    Kamaly, N., Yameen, B., Wu, J., Farokhzad, O.C.: Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116(4), 2602–2663 (2016).  https://doi.org/10.1021/acs.chemrev.5b00346CrossRefGoogle Scholar
  9. 9.
    Chen, G., Roy, I., Yang, C., Prasad, P.N.: Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 116(5), 2826–2885 (2016).  https://doi.org/10.1021/acs.chemrev.5b00148CrossRefGoogle Scholar
  10. 10.
    Stuart, M.A., Huck, W.T., Genzer, J., Muller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Szleifer, I., Tsukruk, V.V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I., Minko, S.: Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9(2), 101–113 (2010).  https://doi.org/10.1038/nmat2614CrossRefGoogle Scholar
  11. 11.
    Pacardo, D.B., Ligler, F.S., Gu, Z.: Programmable nanomedicine: synergistic and sequential drug delivery systems. Nanoscale. 7(8), 3381–3391 (2015).  https://doi.org/10.1039/c4nr07677jCrossRefGoogle Scholar
  12. 12.
    Mura, S., Nicolas, J., Couvreur, P.: Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12(11), 991–1003 (2013).  https://doi.org/10.1038/nmat3776CrossRefGoogle Scholar
  13. 13.
    Koetting, M.C., Peters, J.T., Steichen, S.D., Peppas, N.A.: Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater. Sci. Eng. R. Rep. 93, 1–49 (2015).  https://doi.org/10.1016/j.mser.2015.04.001CrossRefGoogle Scholar
  14. 14.
    Torchilin, V.P.: Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13(11), 813–827 (2014).  https://doi.org/10.1038/nrd4333CrossRefGoogle Scholar
  15. 15.
    de la Rica, R., Aili, D., Stevens, M.M.: Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev. 64(11), 967–978 (2012).  https://doi.org/10.1016/j.addr.2012.01.002CrossRefGoogle Scholar
  16. 16.
    Correa, S., Dreaden, E.C., Gu, L., Hammond, P.T.: Engineering nanolayered particles for modular drug delivery. J. Control. Release. (2016).  https://doi.org/10.1016/j.jconrel.2016.01.040CrossRefGoogle Scholar
  17. 17.
    Kemp, J.A., Shim, M.S., Heo, C.Y., Kwon, Y.J.: “Combo” nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv. Drug Deliv. Rev. 98, 3–18 (2016).  https://doi.org/10.1016/j.addr.2015.10.019CrossRefGoogle Scholar
  18. 18.
    Xu, X., Ho, W., Zhang, X., Bertrand, N., Farokhzad, O.: Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol. Med. 21(4), 223–232 (2015).  https://doi.org/10.1016/j.molmed.2015.01.001CrossRefGoogle Scholar
  19. 19.
    Gref, R., Minamitake, Y., Peracchia, M.T., Trubetskoy, V., Torchilin, V., Langer, R.: Biodegradable long-circulating polymeric nanospheres. Science. 263(5153), 1600–1603 (1994)CrossRefGoogle Scholar
  20. 20.
    Hamidi, M., Azadi, A., Rafiei, P.: Pharmacokinetic consequences of pegylation. Drug Deliv. 13(6), 399–409 (2006).  https://doi.org/10.1080/10717540600814402CrossRefGoogle Scholar
  21. 21.
    Maeda, H.: Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug. Chem. 21(5), 797–802 (2010).  https://doi.org/10.1021/bc100070gCrossRefGoogle Scholar
  22. 22.
    Matsumura, Y., Maeda, H.: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46(12 Pt 1), 6387–6392 (1986)Google Scholar
  23. 23.
    Carmeliet, P., Jain, R.K.: Angiogenesis in cancer and other diseases. Nature. 407(6801), 249–257 (2000).  https://doi.org/10.1038/35025220CrossRefGoogle Scholar
  24. 24.
    Kamaly, N., Xiao, Z., Valencia, P.M., Radovic-Moreno, A.F., Farokhzad, O.C.: Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41(7), 2971–3010 (2012).  https://doi.org/10.1039/c2cs15344kCrossRefGoogle Scholar
  25. 25.
    Shi, J., Kantoff, P.W., Wooster, R., Farokhzad, O.C.: Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer. 17(1), 20–37 (2017).  https://doi.org/10.1038/nrc.2016.108CrossRefGoogle Scholar
  26. 26.
    Allen, T.M., Chonn, A.: Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett. 223(1), 42–46 (1987).  https://doi.org/10.1016/0014-5793(87)80506-9CrossRefGoogle Scholar
  27. 27.
    Barenholz, Y.: Doxil(R)--the first FDA-approved nano-drug: lessons learned. J. Control. Release. 160(2), 117–134 (2012).  https://doi.org/10.1016/j.jconrel.2012.03.020CrossRefGoogle Scholar
  28. 28.
    Prabhakar, U., Maeda, H., Jain, R.K., Sevick-Muraca, E.M., Zamboni, W., Farokhzad, O.C., Barry, S.T., Gabizon, A., Grodzinski, P., Blakey, D.C.: Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73(8), 2412–2417 (2013).  https://doi.org/10.1158/0008-5472.CAN-12-4561CrossRefGoogle Scholar
  29. 29.
    Hrkach, J., Von Hoff, D., Mukkaram Ali, M., Andrianova, E., Auer, J., Campbell, T., De Witt, D., Figa, M., Figueiredo, M., Horhota, A., Low, S., McDonnell, K., Peeke, E., Retnarajan, B., Sabnis, A., Schnipper, E., Song, J.J., Song, Y.H., Summa, J., Tompsett, D., Troiano, G., Van Geen Hoven, T., Wright, J., LoRusso, P., Kantoff, P.W., Bander, N.H., Sweeney, C., Farokhzad, O.C., Langer, R., Zale, S.: Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 4(128), 128ra139 (2012).  https://doi.org/10.1126/scitranslmed.3003651CrossRefGoogle Scholar
  30. 30.
    Eliasof, S., Lazarus, D., Peters, C.G., Case, R.I., Cole, R.O., Hwang, J., Schluep, T., Chao, J., Lin, J., Yen, Y., Han, H., Wiley, D.T., Zuckerman, J.E., Davis, M.E.: Correlating preclinical animal studies and human clinical trials of a multifunctional, polymeric nanoparticle. Proc. Natl. Acad. Sci. U. S. A. 110(37), 15127–15132 (2013).  https://doi.org/10.1073/pnas.1309566110CrossRefGoogle Scholar
  31. 31.
    Zuckerman, J.E., Gritli, I., Tolcher, A., Heidel, J.D., Lim, D., Morgan, R., Chmielowski, B., Ribas, A., Davis, M.E., Yen, Y.: Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc. Natl. Acad. Sci. U. S. A. 111(31), 11449–11454 (2014).  https://doi.org/10.1073/pnas.1411393111CrossRefGoogle Scholar
  32. 32.
    Stylianopoulos, T., Jain, R.K.: Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc. Natl. Acad. Sci. U. S. A. 110(46), 18632–18637 (2013).  https://doi.org/10.1073/pnas.1318415110CrossRefGoogle Scholar
  33. 33.
    Miller, M.A., Gadde, S., Pfirschke, C., Engblom, C., Sprachman, M.M., Kohler, R.H., Yang, K.S., Laughney, A.M., Wojtkiewicz, G., Kamaly, N., Bhonagiri, S., Pittet, M.J., Farokhzad, O.C., Weissleder, R.: Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci. Transl. Med. 7(314), 314ra183 (2015).  https://doi.org/10.1126/scitranslmed.aac6522CrossRefGoogle Scholar
  34. 34.
    Chauhan, V.P., Stylianopoulos, T., Martin, J.D., Popovic, Z., Chen, O., Kamoun, W.S., Bawendi, M.G., Fukumura, D., Jain, R.K.: Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 7(6), 383–388 (2012).  https://doi.org/10.1038/nnano.2012.45CrossRefGoogle Scholar
  35. 35.
    Foster, C., Watson, A., Kaplinsky, J., Kamaly, N.: Improved Targeting of Cancers with Nanotherapeutics. Methods Mol. Biol. 1530, 13–37 (2017).  https://doi.org/10.1007/978-1-4939-6646-2_2CrossRefGoogle Scholar
  36. 36.
    Wang, A.Z., Gu, F., Zhang, L., Chan, J.M., Radovic-Moreno, A., Shaikh, M.R., Farokhzad, O.C.: Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin. Biol. Ther. 8(8), 1063–1070 (2008).  https://doi.org/10.1517/14712598.8.8.1063CrossRefGoogle Scholar
  37. 37.
    Wicki, A., Witzigmann, D., Balasubramanian, V., Huwyler, J.: Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control. Release. 200, 138–157 (2015).  https://doi.org/10.1016/j.jconrel.2014.12.030CrossRefGoogle Scholar
  38. 38.
    Lyseng-Williamson, K.A., Duggan, S.T., Keating, G.M.: Pegylated liposomal doxorubicin: a guide to its use in various malignancies. BioDrugs. 27(5), 533–540 (2013).  https://doi.org/10.1007/s40259-013-0070-1CrossRefGoogle Scholar
  39. 39.
    Harrison, M., Tomlinson, D., Stewart, S.: Liposomal-entrapped doxorubicin: an active agent in AIDS-related Kaposi's sarcoma. J. Clin. Oncol. 13(4), 914–920 (1995)CrossRefGoogle Scholar
  40. 40.
    Money-Kyrle, J.F., Bates, F., Ready, J., Gazzard, B.G., Phillips, R.H., Boag, F.C.: Liposomal daunorubicin in advanced Kaposi's sarcoma: a phase II study. Clin. Oncol. (R. Coll. Radiol.). 5(6), 367–371 (1993)CrossRefGoogle Scholar
  41. 41.
    Rosenthal, E., Poizot-Martin, I., Saint-Marc, T., Spano, J.P., Cacoub, P., Group DNXS: Phase IV study of liposomal daunorubicin (DaunoXome) in AIDS-related Kaposi sarcoma. Am. J. Clin. Oncol. 25(1), 57–59 (2002)CrossRefGoogle Scholar
  42. 42.
    Khemapech, N., Oranratanaphan, S., Termrungruanglert, W., Lertkhachonsuk, R., Vasurattana, A.: Salvage chemotherapy in recurrent platinum-resistant or refractory epithelial ovarian cancer with Carboplatin and distearoylphosphatidylcholine pegylated liposomal Doxorubicin (lipo-dox(R)). Asian Pac. J. Cancer Prev. 14(3), 2131–2135 (2013)CrossRefGoogle Scholar
  43. 43.
    Glantz, M.J., Jaeckle, K.A., Chamberlain, M.C., Phuphanich, S., Recht, L., Swinnen, L.J., Maria, B., LaFollette, S., Schumann, G.B., Cole, B.F., Howell, S.B.: A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin. Cancer Res. 5(11), 3394–3402 (1999)Google Scholar
  44. 44.
    Batist, G., Ramakrishnan, G., Rao, C.S., Chandrasekharan, A., Gutheil, J., Guthrie, T., Shah, P., Khojasteh, A., Nair, M.K., Hoelzer, K., Tkaczuk, K., Park, Y.C., Lee, L.W.: Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J. Clin. Oncol. 19(5), 1444–1454 (2001)CrossRefGoogle Scholar
  45. 45.
    FDA approves liposomal vincristine (Marqibo) for rare leukemia. Oncology (Williston Park). 26(9), 841 (2012)Google Scholar
  46. 46.
    Silverman, J.A., Deitcher, S.R.: Marqibo(R) (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol. 71(3), 555–564 (2013).  https://doi.org/10.1007/s00280-012-2042-4CrossRefGoogle Scholar
  47. 47.
    Allen, T.M., Cullis, P.R.: Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65(1), 36–48 (2013).  https://doi.org/10.1016/j.addr.2012.09.037CrossRefGoogle Scholar
  48. 48.
    Gabizon, A., Shmeeda, H., Barenholz, Y.: Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin. Pharmacokinet. 42(5), 419–436 (2003).  https://doi.org/10.2165/00003088-200342050-00002CrossRefGoogle Scholar
  49. 49.
    Kratz, F.: Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J. Control. Release. 132(3), 171–183 (2008).  https://doi.org/10.1016/j.jconrel.2008.05.010CrossRefGoogle Scholar
  50. 50.
    Singla, A.K., Garg, A., Aggarwal, D.: Paclitaxel and its formulations. Int. J. Pharm. 235(1-2), 179–192 (2002)CrossRefGoogle Scholar
  51. 51.
    Kundranda, M.N., Niu, J.: Albumin-bound paclitaxel in solid tumors: clinical development and future directions. Drug Des. Devel. Ther. 9, 3767–3777 (2015).  https://doi.org/10.2147/DDDT.S88023CrossRefGoogle Scholar
  52. 52.
    Liu, Z., Chen, X.: Simple bioconjugate chemistry serves great clinical advances: albumin as a versatile platform for diagnosis and precision therapy. Chem. Soc. Rev. 45(5), 1432–1456 (2016).  https://doi.org/10.1039/c5cs00158gCrossRefGoogle Scholar
  53. 53.
    Ibrahim, N.K., Samuels, B., Page, R., Doval, D., Patel, K.M., Rao, S.C., Nair, M.K., Bhar, P., Desai, N., Hortobagyi, G.N.: Multicenter phase II trial of ABI-007, an albumin-bound paclitaxel, in women with metastatic breast cancer. J. Clin. Oncol. 23(25), 6019–6026 (2005).  https://doi.org/10.1200/JCO.2005.11.013CrossRefGoogle Scholar
  54. 54.
    Rajeshkumar, N.V., Yabuuchi, S., Pai, S.G., Tong, Z., Hou, S., Bateman, S., Pierce, D.W., Heise, C., Von Hoff, D.D., Maitra, A., Hidalgo, M.: Superior therapeutic efficacy of nab-paclitaxel over cremophor-based paclitaxel in locally advanced and metastatic models of human pancreatic cancer. Br. J. Cancer. 115(4), 442–453 (2016).  https://doi.org/10.1038/bjc.2016.215CrossRefGoogle Scholar
  55. 55.
    Park, S.R., Oh, D.Y., Kim, D.W., Kim, T.Y., Heo, D.S., Bang, Y.J., Kim, N.K., Kang, W.K., Kim, H.T., Im, S.A., Suh, J.H., Kim, H.K.: A multi-center, late phase II clinical trial of Genexol (paclitaxel) and cisplatin for patients with advanced gastric cancer. Oncol. Rep. 12(5), 1059–1064 (2004)Google Scholar
  56. 56.
    Kim, T.Y., Kim, D.W., Chung, J.Y., Shin, S.G., Kim, S.C., Heo, D.S., Kim, N.K., Bang, Y.J.: Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 10(11), 3708–3716 (2004).  https://doi.org/10.1158/1078-0432.CCR-03-065510/11/3708CrossRefGoogle Scholar
  57. 57.
    Ediriwickrema, A., Zhou, J., Deng, Y., Saltzman, W.M.: Multi-layered nanoparticles for combination gene and drug delivery to tumors. Biomaterials. 35(34), 9343–9354 (2014).  https://doi.org/10.1016/j.biomaterials.2014.07.043CrossRefGoogle Scholar
  58. 58.
    Gradishar, W.J., Tjulandin, S., Davidson, N., Shaw, H., Desai, N., Bhar, P., Hawkins, M., O'Shaughnessy, J.: Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 23(31), 7794–7803 (2005).  https://doi.org/10.1200/JCO.2005.04.937CrossRefGoogle Scholar
  59. 59.
    Nishiyama, N., Matsumura, Y., Kataoka, K.: Development of polymeric micelles for targeting intractable cancers. Cancer Sci. (2016).  https://doi.org/10.1111/cas.12960CrossRefGoogle Scholar
  60. 60.
    Cabral, H., Kataoka, K.: Progress of drug-loaded polymeric micelles into clinical studies. J. Control. Release. 190, 465–476 (2014).  https://doi.org/10.1016/j.jconrel.2014.06.042CrossRefGoogle Scholar
  61. 61.
    Batrakova, E.V., Kabanov, A.V.: Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release. 130(2), 98–106 (2008).  https://doi.org/10.1016/j.jconrel.2008.04.013CrossRefGoogle Scholar
  62. 62.
    Ibrahim, N.K., Desai, N., Legha, S., Soon-Shiong, P., Theriault, R.L., Rivera, E., Esmaeli, B., Ring, S.E., Bedikian, A., Hortobagyi, G.N., Ellerhorst, J.A.: Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin. Cancer Res. 8(5), 1038–1044 (2002)Google Scholar
  63. 63.
    Sparreboom, A., Scripture, C.D., Trieu, V., Williams, P.J., De, T., Yang, A., Beals, B., Figg, W.D., Hawkins, M., Desai, N.: Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin. Cancer Res. 11(11), 4136–4143 (2005).  https://doi.org/10.1158/1078-0432.CCR-04-2291CrossRefGoogle Scholar
  64. 64.
    Duncan, R.: Polymer therapeutics: top 10 selling pharmaceuticals - what next? J. Control. Release. 190, 371–380 (2014).  https://doi.org/10.1016/j.jconrel.2014.05.001CrossRefGoogle Scholar
  65. 65.
    Duncan, R.: Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer. 6(9), 688–701 (2006).  https://doi.org/10.1038/nrc1958CrossRefGoogle Scholar
  66. 66.
    Dinndorf, P.A., Gootenberg, J., Cohen, M.H., Keegan, P., Pazdur, R.: FDA drug approval summary: pegaspargase (oncaspar) for the first-line treatment of children with acute lymphoblastic leukemia (ALL). Oncologist. 12(8), 991–998 (2007).  https://doi.org/10.1634/theoncologist.12-8-991CrossRefGoogle Scholar
  67. 67.
    Venkatakrishnan, K., Liu, Y., Noe, D., Mertz, J., Bargfrede, M., Marbury, T., Farbakhsh, K., Oliva, C., Milton, A.: Pharmacokinetics and pharmacodynamics of liposomal mifamurtide in adult volunteers with mild or moderate hepatic impairment. Br. J. Clin. Pharmacol. 77(6), 998–1010 (2014).  https://doi.org/10.1111/bcp.12261CrossRefGoogle Scholar
  68. 68.
    Rivera Gil, P., Huhn, D., del Mercato, L.L., Sasse, D., Parak, W.J.: Nanopharmacy: inorganic nanoscale devices as vectors and active compounds. Pharmacol. Res. 62(2), 115–125 (2010).  https://doi.org/10.1016/j.phrs.2010.01.009CrossRefGoogle Scholar
  69. 69.
    Bleyer, W.A.: Intrathecal depot cytarabine therapy: a welcome addition to a limited armamentarium. Clin. Cancer Res. 5, 3349–3351 (1999)Google Scholar
  70. 70.
  71. 71.
    http://www.abraxane.com/mbc/. Accessed 11 Oct 2017
  72. 72.
  73. 73.
  74. 74.
  75. 75.
    Espelin, C.W., Leonard, S.C., Geretti, E., Wickham, T.J., Hendriks, B.S.: Dual HER2 targeting with trastuzumab and liposomal-encapsulated doxorubicin (MM-302) demonstrates synergistic antitumor activity in breast and gastric cancer. Cancer Res. 76(6), 1517–1527 (2016).  https://doi.org/10.1158/0008-5472.CAN-15-1518CrossRefGoogle Scholar
  76. 76.
    Davis, M.E., Zuckerman, J.E., Choi, C.H., Seligson, D., Tolcher, A., Alabi, C.A., Yen, Y., Heidel, J.D., Ribas, A.: Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 464(7291), 1067–1070 (2010).  https://doi.org/10.1038/nature08956CrossRefGoogle Scholar
  77. 77.
    Kannan, R.M., Nance, E., Kannan, S., Tomalia, D.A.: Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J. Intern. Med. 276(6), 579–617 (2014).  https://doi.org/10.1111/joim.12280CrossRefGoogle Scholar
  78. 78.
    Roy, U., Rodriguez, J., Barber, P., das Neves, J., Sarmento, B., Nair, M.: The potential of HIV-1 nanotherapeutics: from in vitro studies to clinical trials. Nanomedicine (Lond.). 10(24), 3597–3609 (2015).  https://doi.org/10.2217/nnm.15.160CrossRefGoogle Scholar
  79. 79.
    Mignani, S., El Kazzouli, S., Bousmina, M., Majoral, J.P.: Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv. Drug Deliv. Rev. 65(10), 1316–1330 (2013).  https://doi.org/10.1016/j.addr.2013.01.001CrossRefGoogle Scholar
  80. 80.
    Dreaden, E.C., Mackey, M.A., Huang, X., Kang, B., El-Sayed, M.A.: Beating cancer in multiple ways using nanogold. Chem. Soc. Rev. 40(7), 3391–3404 (2011).  https://doi.org/10.1039/c0cs00180eCrossRefGoogle Scholar
  81. 81.
    Anselmo, A.C., Mitragotri, S.: A review of clinical translation of inorganic nanoparticles. AAPS J. 17(5), 1041–1054 (2015).  https://doi.org/10.1208/s12248-015-9780-2CrossRefGoogle Scholar
  82. 82.
    Giljohann, D.A., Seferos, D.S., Daniel, W.L., Massich, M.D., Patel, P.C., Mirkin, C.A.: Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. Engl. 49(19), 3280–3294 (2010).  https://doi.org/10.1002/anie.200904359CrossRefGoogle Scholar
  83. 83.
    Phillips, E., Penate-Medina, O., Zanzonico, P.B., Carvajal, R.D., Mohan, P., Ye, Y., Humm, J., Gonen, M., Kalaigian, H., Schoder, H., Strauss, H.W., Larson, S.M., Wiesner, U., Bradbury, M.S.: Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 6(260), 260ra149 (2014).  https://doi.org/10.1126/scitranslmed.3009524CrossRefGoogle Scholar
  84. 84.
    Yang, Y., Yu, C.: Advances in silica based nanoparticles for targeted cancer therapy. Nanomedicine. 12(2), 317–332 (2016).  https://doi.org/10.1016/j.nano.2015.10.018CrossRefGoogle Scholar
  85. 85.
    Meng, H., Wang, M., Liu, H., Liu, X., Situ, A., Wu, B., Ji, Z., Chang, C.H., Nel, A.E.: Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano. 9(4), 3540–3557 (2015).  https://doi.org/10.1021/acsnano.5b00510CrossRefGoogle Scholar
  86. 86.
    Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., Muller, R.N.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108(6), 2064–2110 (2008).  https://doi.org/10.1021/cr068445eCrossRefGoogle Scholar
  87. 87.
    Maier-Hauff, K., Ulrich, F., Nestler, D., Niehoff, H., Wust, P., Thiesen, B., Orawa, H., Budach, V., Jordan, A.: Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 103(2), 317–324 (2011).  https://doi.org/10.1007/s11060-010-0389-0CrossRefGoogle Scholar
  88. 88.
    Maggiorella, L., Barouch, G., Devaux, C., Pottier, A., Deutsch, E., Bourhis, J., Borghi, E., Levy, L.: Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol. 8(9), 1167–1181 (2012).  https://doi.org/10.2217/fon.12.96CrossRefGoogle Scholar
  89. 89.
    Field, J.A., Luna-Velasco, A., Boitano, S.A., Shadman, F., Ratner, B.D., Barnes, C., Sierra-Alvarez, R.: Cytotoxicity and physicochemical properties of hafnium oxide nanoparticles. Chemosphere. 84(10), 1401–1407 (2011).  https://doi.org/10.1016/j.chemosphere.2011.04.067CrossRefGoogle Scholar
  90. 90.
    Park, B.H., Hwang, T., Liu, T.C., Sze, D.Y., Kim, J.S., Kwon, H.C., Oh, S.Y., Han, S.Y., Yoon, J.H., Hong, S.H., Moon, A., Speth, K., Park, C., Ahn, Y.J., Daneshmand, M., Rhee, B.G., Pinedo, H.M., Bell, J.C., Kirn, D.H.: Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 9(6), 533–542 (2008).  https://doi.org/10.1016/S1470-2045(08)70107-4CrossRefGoogle Scholar
  91. 91.
    Tolcher, A.W., Rodrigueza, W.V., Rasco, D.W., Patnaik, A., Papadopoulos, K.P., Amaya, A., Moore, T.D., Gaylor, S.K., Bisgaier, C.L., Sooch, M.P., Woolliscroft, M.J., Messmann, R.A.: A phase 1 study of the BCL2-targeted deoxyribonucleic acid inhibitor (DNAi) PNT2258 in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 73(2), 363–371 (2014).  https://doi.org/10.1007/s00280-013-2361-0CrossRefGoogle Scholar
  92. 92.
    Tabernero, J., Shapiro, G.I., LoRusso, P.M., Cervantes, A., Schwartz, G.K., Weiss, G.J., Paz-Ares, L., Cho, D.C., Infante, J.R., Alsina, M., Gounder, M.M., Falzone, R., Harrop, J., White, A.C., Toudjarska, I., Bumcrot, D., Meyers, R.E., Hinkle, G., Svrzikapa, N., Hutabarat, R.M., Clausen, V.A., Cehelsky, J., Nochur, S.V., Gamba-Vitalo, C., Vaishnaw, A.K., Sah, D.W., Gollob, J.A., Burris, H.A.: First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 3(4), 406–417 (2013).  https://doi.org/10.1158/2159-8290.CD-12-0429CrossRefGoogle Scholar
  93. 93.
    Schultheis, B., Strumberg, D., Santel, A., Vank, C., Gebhardt, F., Keil, O., Lange, C., Giese, K., Kaufmann, J., Khan, M., Drevs, J.: First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J. Clin. Oncol. 32(36), 4141–4148 (2014).  https://doi.org/10.1200/JCO.2013.55.0376CrossRefGoogle Scholar
  94. 94.
    Jensen, S.A., Day, E.S., Ko, C.H., Hurley, L.A., Luciano, J.P., Kouri, F.M., Merkel, T.J., Luthi, A.J., Patel, P.C., Cutler, J.I., Daniel, W.L., Scott, A.W., Rotz, M.W., Meade, T.J., Giljohann, D.A., Mirkin, C.A., Stegh, A.H.: Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl. Med. 5(209), 209ra152 (2013).  https://doi.org/10.1126/scitranslmed.3006839CrossRefGoogle Scholar
  95. 95.
    Islam, M.A., Reesor, E.K., Xu, Y., Zope, H.R., Zetter, B.R., Shi, J.: Biomaterials for mRNA delivery. Biomater. Sci. 3(12), 1519–1533 (2015).  https://doi.org/10.1039/c5bm00198fCrossRefGoogle Scholar
  96. 96.
    Park, J., Wrzesinski, S.H., Stern, E., Look, M., Criscione, J., Ragheb, R., Jay, S.M., Demento, S.L., Agawu, A., Licona Limon, P., Ferrandino, A.F., Gonzalez, D., Habermann, A., Flavell, R.A., Fahmy, T.M.: Combination delivery of TGF-beta inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat. Mater. 11(10), 895–905 (2012).  https://doi.org/10.1038/nmat3355CrossRefGoogle Scholar
  97. 97.
    Lee, I.H., An, S., Yu, M.K., Kwon, H.K., Im, S.H., Jon, S.: Targeted chemoimmunotherapy using drug-loaded aptamer-dendrimer bioconjugates. J. Control. Release. 155(3), 435–441 (2011).  https://doi.org/10.1016/j.jconrel.2011.05.025CrossRefGoogle Scholar
  98. 98.
    Yildiz, I., Shukla, S., Steinmetz, N.F.: Applications of viral nanoparticles in medicine. Curr. Opin. Biotechnol. 22(6), 901–908 (2011).  https://doi.org/10.1016/j.copbio.2011.04.020CrossRefGoogle Scholar
  99. 99.
    Czapar, A.E., Zheng, Y.R., Riddell, I.A., Shukla, S., Awuah, S.G., Lippard, S.J., Steinmetz, N.F.: Tobacco mosaic virus delivery of phenanthriplatin for cancer therapy. ACS Nano. 10(4), 4119–4126 (2016).  https://doi.org/10.1021/acsnano.5b07360CrossRefGoogle Scholar
  100. 100.
    Chow, E.K., Zhang, X.Q., Chen, M., Lam, R., Robinson, E., Huang, H., Schaffer, D., Osawa, E., Goga, A., Ho, D.: Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 3(73), 73ra21 (2011).  https://doi.org/10.1126/scitranslmed.3001713CrossRefGoogle Scholar
  101. 101.
    Mochalin, V.N., Pentecost, A., Li, X.M., Neitzel, I., Nelson, M., Wei, C., He, T., Guo, F., Gogotsi, Y.: Adsorption of drugs on nanodiamond: toward development of a drug delivery platform. Mol. Pharm. 10(10), 3728–3735 (2013).  https://doi.org/10.1021/mp400213zCrossRefGoogle Scholar
  102. 102.
    Ho, D.: Nanodiamond-based chemotherapy and imaging. Cancer Treat. Res. 166, 85–102 (2015).  https://doi.org/10.1007/978-3-319-16555-4_4CrossRefGoogle Scholar
  103. 103.
    Jiang, T., Sun, W., Zhu, Q., Burns, N.A., Khan, S.A., Mo, R., Gu, Z.: Furin-mediated sequential delivery of anticancer cytokine and small-molecule drug shuttled by graphene. Adv. Mater. 27(6), 1021–1028 (2015).  https://doi.org/10.1002/adma.201404498CrossRefGoogle Scholar
  104. 104.
    Liu, Z., Robinson, J.T., Sun, X., Dai, H.: PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130(33), 10876–10877 (2008).  https://doi.org/10.1021/ja803688xCrossRefGoogle Scholar
  105. 105.
    Maldonado, R.A., LaMothe, R.A., Ferrari, J.D., Zhang, A.H., Rossi, R.J., Kolte, P.N., Griset, A.P., O'Neil, C., Altreuter, D.H., Browning, E., Johnston, L., Farokhzad, O.C., Langer, R., Scott, D.W., von Andrian, U.H., Kishimoto, T.K.: Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc. Natl. Acad. Sci. U. S. A. 112(2), E156–E165 (2015).  https://doi.org/10.1073/pnas.1408686111CrossRefGoogle Scholar
  106. 106.
    Ilyinskii, P.O., Roy, C.J., O'Neil, C.P., Browning, E.A., Pittet, L.A., Altreuter, D.H., Alexis, F., Tonti, E., Shi, J., Basto, P.A., Iannacone, M., Radovic-Moreno, A.F., Langer, R.S., Farokhzad, O.C., von Andrian, U.H., Johnston, L.P., Kishimoto, T.K.: Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release. Vaccine. 32(24), 2882–2895 (2014).  https://doi.org/10.1016/j.vaccine.2014.02.027CrossRefGoogle Scholar
  107. 107.
    Chen, E.C., Fathi, A.T., Brunner, A.M.: Reformulating acute myeloid leukemia: liposomalcytarabine and daunorubicin (CPX-351) as an emerging therapy for secondary AML. Onco. Targets. Ther. 11, 3425–3434 (2017).  https://doi.org/10.2147/OTT.S141212CrossRefGoogle Scholar
  108. 108.
    Ilinskaya, A.N., Dobrovolskaia, M.A.: Understanding the immunogenicity and antigenicity of nanomaterials: past, present and future. Toxicol. Appl. Pharmacol. 299, 70–77 (2016).  https://doi.org/10.1016/j.taap.2016.01.005CrossRefGoogle Scholar
  109. 109.
    Desai, N.: Challenges in development of nanoparticle-based therapeutics. AAPS J. 14(2), 282–295 (2012).  https://doi.org/10.1208/s12248-012-9339-4CrossRefGoogle Scholar
  110. 110.
    Mahon, E., Salvati, A., Baldelli Bombelli, F., Lynch, I., Dawson, K.A.: Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J. Control. Release. 161(2), 164–174 (2012).  https://doi.org/10.1016/j.jconrel.2012.04.009CrossRefGoogle Scholar
  111. 111.
    Blanco, E., Shen, H., Ferrari, M.: Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33(9), 941–951 (2015).  https://doi.org/10.1038/nbt.3330CrossRefGoogle Scholar
  112. 112.
    Mahmoudi, M., Lynch, I., Ejtehadi, M.R., Monopoli, M.P., Bombelli, F.B., Laurent, S.: Protein-nanoparticle interactions: opportunities and challenges. Chem. Rev. 111(9), 5610–5637 (2011).  https://doi.org/10.1021/cr100440gCrossRefGoogle Scholar
  113. 113.
    Miller, M.A., Zheng, Y.R., Gadde, S., Pfirschke, C., Zope, H., Engblom, C., Kohler, R.H., Iwamoto, Y., Yang, K.S., Askevold, B., Kolishetti, N., Pittet, M., Lippard, S.J., Farokhzad, O.C., Weissleder, R.: Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat. Commun. 6, 8692 (2015).  https://doi.org/10.1038/ncomms9692CrossRefGoogle Scholar
  114. 114.
    Bednarski, M., Dudek, M., Knutelska, J., Nowinski, L., Sapa, J., Zygmunt, M., Nowak, G., Luty-Blocho, M., Wojnicki, M., Fitzner, K., Tesiorowski, M.: The influence of the route of administration of gold nanoparticles on their tissue distribution and basic biochemical parameters: In vivo studies. Pharmacol. Rep. 67(3), 405–409 (2015).  https://doi.org/10.1016/j.pharep.2014.10.019CrossRefGoogle Scholar
  115. 115.
    Gurney, H.: How to calculate the dose of chemotherapy. Br. J. Cancer. 86(8), 1297–1302 (2002).  https://doi.org/10.1038/sj.bjc.6600139CrossRefGoogle Scholar
  116. 116.
    Zee-Cheng, R.K., Cheng, C.C.: Delivery of anticancer drugs. Methods Find. Exp. Clin. Pharmacol. 11(7-8), 439–529 (1989)Google Scholar
  117. 117.
    Collins, J.M.: Pharmacologic rationale for regional drug delivery. J. Clin. Oncol. 2(5), 498–504 (1984)CrossRefGoogle Scholar
  118. 118.
    Markman, M.: Intraperitoneal drug delivery of antineoplastics. Drugs. 61(8), 1057–1065 (2001)CrossRefGoogle Scholar
  119. 119.
    Lokich, J., Anderson, N.: Dose intensity for bolus versus infusion chemotherapy administration: review of the literature for 27 anti-neoplastic agents. Ann. Oncol. 8(1), 15–25 (1997)CrossRefGoogle Scholar
  120. 120.
    Harivardhan Reddy, L., Sharma, R.K., Chuttani, K., Mishra, A.K., Murthy, R.S.: Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton's lymphoma tumor bearing mice. J. Control. Release. 105(3), 185–198 (2005).  https://doi.org/10.1016/j.jconrel.2005.02.028CrossRefGoogle Scholar
  121. 121.
    Dakwar, G.R., Shariati, M., Willaert, W., Ceelen, W., De Smedt, S.C., Remaut, K.: Nanomedicine-based intraperitoneal therapy for the treatment of peritoneal carcinomatosis - Mission possible? Adv. Drug Deliv. Rev. (2016).  https://doi.org/10.1016/j.addr.2016.07.001CrossRefGoogle Scholar
  122. 122.
    Ceelen, W.P.: Peritoneal Carcinomatosis : A Multidisciplinary Approach. Springer, New York (2007)CrossRefGoogle Scholar
  123. 123.
    Bajaj, G., Yeo, Y.: Drug delivery systems for intraperitoneal therapy. Pharm. Res. 27(5), 735–738 (2010).  https://doi.org/10.1007/s11095-009-0031-zCrossRefGoogle Scholar
  124. 124.
    Lu, Z., Guillaume Wientjes, M., Au, J.L.-S.: Development of drug-loaded particles for intraperitoneal therapy. In: Ceelen, W.P., Levine, E. (eds.) Intraperitoneal Cancer Therapy: Principles and Practice, pp. 341–345. CRC Press, Boca Raton, FL, USA (2015)CrossRefGoogle Scholar
  125. 125.
    Anwer, K., Barnes, M.N., Fewell, J., Lewis, D.H., Alvarez, R.D.: Phase-I clinical trial of IL-12 plasmid/lipopolymer complexes for the treatment of recurrent ovarian cancer. Gene Ther. 17(3), 360–369 (2010).  https://doi.org/10.1038/gt.2009.159CrossRefGoogle Scholar
  126. 126.
    Anwer, K., Kelly, F.J., Chu, C., Fewell, J.G., Lewis, D., Alvarez, R.D.: Phase I trial of a formulated IL-12 plasmid in combination with carboplatin and docetaxel chemotherapy in the treatment of platinum-sensitive recurrent ovarian cancer. Gynecol. Oncol. 131(1), 169–173 (2013).  https://doi.org/10.1016/j.ygyno.2013.07.081CrossRefGoogle Scholar
  127. 127.
    Alvarez, R.D., Sill, M.W., Davidson, S.A., Muller, C.Y., Bender, D.P., DeBernardo, R.L., Behbakht, K., Huh, W.K.: A phase II trial of intraperitoneal EGEN-001, an IL-12 plasmid formulated with PEG-PEI-cholesterol lipopolymer in the treatment of persistent or recurrent epithelial ovarian, fallopian tube or primary peritoneal cancer: a gynecologic oncology group study. Gynecol. Oncol. 133(3), 433–438 (2014).  https://doi.org/10.1016/j.ygyno.2014.03.571CrossRefGoogle Scholar
  128. 128.
    Williamson, S.K., Johnson, G.A., Maulhardt, H.A., Moore, K.M., McMeekin, D.S., Schulz, T.K., Reed, G.A., Roby, K.F., Mackay, C.B., Smith, H.J., Weir, S.J., Wick, J.A., Markman, M., diZerega, G.S., Baltezor, M.J., Espinosa, J., Decedue, C.J.: A phase I study of intraperitoneal nanoparticulate paclitaxel (Nanotax(R)) in patients with peritoneal malignancies. Cancer Chemother. Pharmacol. 75(5), 1075–1087 (2015).  https://doi.org/10.1007/s00280-015-2737-4CrossRefGoogle Scholar
  129. 129.
  130. 130.
    Keizer, H.J., Pinedo, H.M.: Cancer chemotherapy: alternative routes of drug administration. A review. Cancer Drug Deliv. 2(2), 147–169 (1985)CrossRefGoogle Scholar
  131. 131.
    Biffi, R., De Braud, F., Orsi, F., Pozzi, S., Arnaldi, P., Goldhirsch, A., Rotmensz, N., Robertson, C., Bellomi, M., Andreoni, B.: A randomized, prospective trial of central venous ports connected to standard open-ended or Groshong catheters in adult oncology patients. Cancer. 92(5), 1204–1212 (2001)CrossRefGoogle Scholar
  132. 132.
    Biffi, R., de Braud, F., Orsi, F., Pozzi, S., Mauri, S., Goldhirsch, A., Nole, F., Andreoni, B.: Totally implantable central venous access ports for long-term chemotherapy. A prospective study analyzing complications and costs of 333 devices with a minimum follow-up of 180 days. Ann. Oncol. 9(7), 767–773 (1998)CrossRefGoogle Scholar
  133. 133.
    Zhang, X.Q., Xu, X., Bertrand, N., Pridgen, E., Swami, A., Farokhzad, O.C.: Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv. Drug Deliv. Rev. 64(13), 1363–1384 (2012).  https://doi.org/10.1016/j.addr.2012.08.005CrossRefGoogle Scholar
  134. 134.
    Pridgen, E.M., Alexis, F., Farokhzad, O.C.: Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin. Drug Deliv. 12(9), 1459–1473 (2015).  https://doi.org/10.1517/17425247.2015.1018175CrossRefGoogle Scholar
  135. 135.
    Dunnhaupt, S., Kammona, O., Waldner, C., Kiparissides, C., Bernkop-Schnurch, A.: Nano-carrier systems: strategies to overcome the mucus gel barrier. Eur. J. Pharm. Biopharm. 96, 447–453 (2015).  https://doi.org/10.1016/j.ejpb.2015.01.022CrossRefGoogle Scholar
  136. 136.
    Haque, S., Whittaker, M.R., McIntosh, M.P., Pouton, C.W., Kaminskas, L.M.: Disposition and safety of inhaled biodegradable nanomedicines: opportunities and challenges. Nanomedicine. 12(6), 1703–1724 (2016).  https://doi.org/10.1016/j.nano.2016.03.002CrossRefGoogle Scholar
  137. 137.
    Kang, H., Gravier, J., Bao, K., Wada, H., Lee, J.H., Baek, Y., El Fakhri, G., Gioux, S., Rubin, B.P., Coll, J.L., Choi, H.S.: Renal clearable organic nanocarriers for bioimaging and drug delivery. Adv. Mater. (2016).  https://doi.org/10.1002/adma.201601101CrossRefGoogle Scholar
  138. 138.
    Sarin, H.: Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J. Angiogenes. Res. 2, 14 (2010).  https://doi.org/10.1186/2040-2384-2-14CrossRefGoogle Scholar
  139. 139.
    Choi, H.S., Liu, W., Misra, P., Tanaka, E., Zimmer, J.P., Itty Ipe, B., Bawendi, M.G., Frangioni, J.V.: Renal clearance of quantum dots. Nat. Biotechnol. 25(10), 1165–1170 (2007).  https://doi.org/10.1038/nbt1340CrossRefGoogle Scholar
  140. 140.
    Cabral, H., Matsumoto, Y., Mizuno, K., Chen, Q., Murakami, M., Kimura, M., Terada, Y., Kano, M.R., Miyazono, K., Uesaka, M., Nishiyama, N., Kataoka, K.: Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 6(12), 815–823 (2011).  https://doi.org/10.1038/nnano.2011.166CrossRefGoogle Scholar
  141. 141.
    Moghimi, S.M., Porter, C.J., Muir, I.S., Illum, L., Davis, S.S.: Non-phagocytic uptake of intravenously injected microspheres in rat spleen: influence of particle size and hydrophilic coating. Biochem. Biophys. Res. Commun. 177(2), 861–866 (1991)CrossRefGoogle Scholar
  142. 142.
    Tenzer, S., Docter, D., Kuharev, J., Musyanovych, A., Fetz, V., Hecht, R., Schlenk, F., Fischer, D., Kiouptsi, K., Reinhardt, C., Landfester, K., Schild, H., Maskos, M., Knauer, S.K., Stauber, R.H.: Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8(10), 772–781 (2013).  https://doi.org/10.1038/nnano.2013.181CrossRefGoogle Scholar
  143. 143.
    Syed, A., Chan, W.C.: How nanoparticles interact with cancer cells. Cancer Treat. Res. 166, 227–244 (2015).  https://doi.org/10.1007/978-3-319-16555-4_10CrossRefGoogle Scholar
  144. 144.
    Gustafson, H.H., Holt-Casper, D., Grainger, D.W., Ghandehari, H.: Nanoparticle uptake: the phagocyte problem. Nano Today. 10(4), 487–510 (2015).  https://doi.org/10.1016/j.nantod.2015.06.006CrossRefGoogle Scholar
  145. 145.
    Dobrovolskaia, M.A., McNeil, S.E.: Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2(8), 469–478 (2007).  https://doi.org/10.1038/nnano.2007.223CrossRefGoogle Scholar
  146. 146.
    Cedervall, T., Lynch, I., Foy, M., Berggard, T., Donnelly, S.C., Cagney, G., Linse, S., Dawson, K.A.: Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew. Chem. Int. Ed. Engl. 46(30), 5754–5756 (2007).  https://doi.org/10.1002/anie.200700465CrossRefGoogle Scholar
  147. 147.
    Lynch, I., Salvati, A., Dawson, K.A.: Protein-nanoparticle interactions: what does the cell see? Nat. Nanotechnol. 4(9), 546–547 (2009).  https://doi.org/10.1038/nnano.2009.248CrossRefGoogle Scholar
  148. 148.
    Nel, A.E., Madler, L., Velegol, D., Xia, T., Hoek, E.M., Somasundaran, P., Klaessig, F., Castranova, V., Thompson, M.: Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8(7), 543–557 (2009).  https://doi.org/10.1038/nmat2442CrossRefGoogle Scholar
  149. 149.
    Cedervall, T., Lynch, I., Lindman, S., Berggard, T., Thulin, E., Nilsson, H., Dawson, K.A., Linse, S.: Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 104(7), 2050–2055 (2007).  https://doi.org/10.1073/pnas.0608582104CrossRefGoogle Scholar
  150. 150.
    Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., Dawson, K.A.: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. U. S. A. 105(38), 14265–14270 (2008).  https://doi.org/10.1073/pnas.0805135105CrossRefGoogle Scholar
  151. 151.
    Walkey, C.D., Olsen, J.B., Guo, H., Emili, A., Chan, W.C.: Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134(4), 2139–2147 (2012).  https://doi.org/10.1021/ja2084338CrossRefGoogle Scholar
  152. 152.
    Ritz, S., Schottler, S., Kotman, N., Baier, G., Musyanovych, A., Kuharev, J., Landfester, K., Schild, H., Jahn, O., Tenzer, S., Mailander, V.: Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules. 16(4), 1311–1321 (2015).  https://doi.org/10.1021/acs.biomac.5b00108CrossRefGoogle Scholar
  153. 153.
    Ogawara, K., Furumoto, K., Nagayama, S., Minato, K., Higaki, K., Kai, T., Kimura, T.: Pre-coating with serum albumin reduces receptor-mediated hepatic disposition of polystyrene nanosphere: implications for rational design of nanoparticles. J. Control. Release. 100(3), 451–455 (2004).  https://doi.org/10.1016/j.jconrel.2004.07.028CrossRefGoogle Scholar
  154. 154.
    Monopoli, M.P., Aberg, C., Salvati, A., Dawson, K.A.: Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7(12), 779–786 (2012).  https://doi.org/10.1038/nnano.2012.207CrossRefGoogle Scholar
  155. 155.
    Salvador-Morales, C., Zhang, L., Langer, R., Farokhzad, O.C.: Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials. 30(12), 2231–2240 (2009).  https://doi.org/10.1016/j.biomaterials.2009.01.005CrossRefGoogle Scholar
  156. 156.
    Harris, J.M., Chess, R.B.: Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2(3), 214–221 (2003).  https://doi.org/10.1038/nrd1033CrossRefGoogle Scholar
  157. 157.
    Knop, K., Hoogenboom, R., Fischer, D., Schubert, U.S.: Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. Engl. 49(36), 6288–6308 (2010).  https://doi.org/10.1002/anie.200902672CrossRefGoogle Scholar
  158. 158.
    Pombo Garcia, K., Zarschler, K., Barbaro, L., Barreto, J.A., O'Malley, W., Spiccia, L., Stephan, H., Graham, B.: Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small. 10(13), 2516–2529 (2014).  https://doi.org/10.1002/smll.201303540CrossRefGoogle Scholar
  159. 159.
    Rodriguez, P.L., Harada, T., Christian, D.A., Pantano, D.A., Tsai, R.K., Discher, D.E.: Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science. 339(6122), 971–975 (2013).  https://doi.org/10.1126/science.1229568CrossRefGoogle Scholar
  160. 160.
    Parodi, A., Quattrocchi, N., van de Ven, A.L., Chiappini, C., Evangelopoulos, M., Martinez, J.O., Brown, B.S., Khaled, S.Z., Yazdi, I.K., Enzo, M.V., Isenhart, L., Ferrari, M., Tasciotti, E.: Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 8(1), 61–68 (2013).  https://doi.org/10.1038/nnano.2012.212CrossRefGoogle Scholar
  161. 161.
    Hu, C.M., Zhang, L., Aryal, S., Cheung, C., Fang, R.H., Zhang, L.: Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U. S. A. 108(27), 10980–10985 (2011).  https://doi.org/10.1073/pnas.1106634108CrossRefGoogle Scholar
  162. 162.
    Hu, C.M., Fang, R.H., Wang, K.C., Luk, B.T., Thamphiwatana, S., Dehaini, D., Nguyen, P., Angsantikul, P., Wen, C.H., Kroll, A.V., Carpenter, C., Ramesh, M., Qu, V., Patel, S.H., Zhu, J., Shi, W., Hofman, F.M., Chen, T.C., Gao, W., Zhang, K., Chien, S., Zhang, L.: Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 526(7571), 118–121 (2015).  https://doi.org/10.1038/nature15373CrossRefGoogle Scholar
  163. 163.
    Ferrari, M.: Frontiers in cancer nanomedicine: directing mass transport through biological barriers. Trends Biotechnol. 28(4), 181–188 (2010).  https://doi.org/10.1016/j.tibtech.2009.12.007CrossRefGoogle Scholar
  164. 164.
    Chanan-Khan, A., Szebeni, J., Savay, S., Liebes, L., Rafique, N.M., Alving, C.R., Muggia, F.M.: Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann. Oncol. 14(9), 1430–1437 (2003)CrossRefGoogle Scholar
  165. 165.
    Schottler, S., Becker, G., Winzen, S., Steinbach, T., Mohr, K., Landfester, K., Mailander, V., Wurm, F.R.: Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11(4), 372–377 (2016).  https://doi.org/10.1038/nnano.2015.330CrossRefGoogle Scholar
  166. 166.
    Salvati, A., Pitek, A.S., Monopoli, M.P., Prapainop, K., Bombelli, F.B., Hristov, D.R., Kelly, P.M., Aberg, C., Mahon, E., Dawson, K.A.: Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8(2), 137–143 (2013).  https://doi.org/10.1038/nnano.2012.237CrossRefGoogle Scholar
  167. 167.
    Dong, Y., Love, K.T., Dorkin, J.R., Sirirungruang, S., Zhang, Y., Chen, D., Bogorad, R.L., Yin, H., Chen, Y., Vegas, A.J., Alabi, C.A., Sahay, G., Olejnik, K.T., Wang, W., Schroeder, A., Lytton-Jean, A.K., Siegwart, D.J., Akinc, A., Barnes, C., Barros, S.A., Carioto, M., Fitzgerald, K., Hettinger, J., Kumar, V., Novobrantseva, T.I., Qin, J., Querbes, W., Koteliansky, V., Langer, R., Anderson, D.G.: Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl. Acad. Sci. U. S. A. 111(11), 3955–3960 (2014).  https://doi.org/10.1073/pnas.1322937111CrossRefGoogle Scholar
  168. 168.
    Sakulkhu, U., Maurizi, L., Mahmoudi, M., Motazacker, M., Vries, M., Gramoun, A., Ollivier Beuzelin, M.G., Vallee, J.P., Rezaee, F., Hofmann, H.: Ex situ evaluation of the composition of protein corona of intravenously injected superparamagnetic nanoparticles in rats. Nanoscale. 6(19), 11439–11450 (2014).  https://doi.org/10.1039/c4nr02793kCrossRefGoogle Scholar
  169. 169.
    Walkey, C.D., Olsen, J.B., Song, F., Liu, R., Guo, H., Olsen, D.W., Cohen, Y., Emili, A., Chan, W.C.: Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano. 8(3), 2439–2455 (2014).  https://doi.org/10.1021/nn406018qCrossRefGoogle Scholar
  170. 170.
    Bigdeli, A., Palchetti, S., Pozzi, D., Hormozi-Nezhad, M.R., Baldelli Bombelli, F., Caracciolo, G., Mahmoudi, M.: Exploring cellular interactions of liposomes using protein corona fingerprints and physicochemical properties. ACS Nano. 10(3), 3723–3737 (2016).  https://doi.org/10.1021/acsnano.6b00261CrossRefGoogle Scholar
  171. 171.
    Choi, C.H., Zuckerman, J.E., Webster, P., Davis, M.E.: Targeting kidney mesangium by nanoparticles of defined size. Proc. Natl. Acad. Sci. U. S. A. 108(16), 6656–6661 (2011).  https://doi.org/10.1073/pnas.1103573108CrossRefGoogle Scholar
  172. 172.
    Zhang, Y.N., Poon, W., Tavares, A.J., McGilvray, I.D., Chan, W.C.: Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Release. (2016).  https://doi.org/10.1016/j.jconrel.2016.01.020CrossRefGoogle Scholar
  173. 173.
    Decuzzi, P., Godin, B., Tanaka, T., Lee, S.Y., Chiappini, C., Liu, X., Ferrari, M.: Size and shape effects in the biodistribution of intravascularly injected particles. J. Control. Release. 141(3), 320–327 (2010).  https://doi.org/10.1016/j.jconrel.2009.10.014CrossRefGoogle Scholar
  174. 174.
    Geng, Y., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T., Discher, D.E.: Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2(4), 249–255 (2007).  https://doi.org/10.1038/nnano.2007.70CrossRefGoogle Scholar
  175. 175.
    Lin, S.Y., Hsu, W.H., Lo, J.M., Tsai, H.C., Hsiue, G.H.: Novel geometry type of nanocarriers mitigated the phagocytosis for drug delivery. J. Control. Release. 154(1), 84–92 (2011).  https://doi.org/10.1016/j.jconrel.2011.04.023CrossRefGoogle Scholar
  176. 176.
    Beningo, K.A., Wang, Y.L.: Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J. Cell Sci. 115(Pt 4), 849–856 (2002)Google Scholar
  177. 177.
    Toy, R., Peiris, P.M., Ghaghada, K.B., Karathanasis, E.: Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine (Lond.). 9(1), 121–134 (2014).  https://doi.org/10.2217/nnm.13.191CrossRefGoogle Scholar
  178. 178.
    Ruggiero, A., Villa, C.H., Bander, E., Rey, D.A., Bergkvist, M., Batt, C.A., Manova-Todorova, K., Deen, W.M., Scheinberg, D.A., McDevitt, M.R.: Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl. Acad. Sci. U. S. A. 107(27), 12369–12374 (2010).  https://doi.org/10.1073/pnas.0913667107CrossRefGoogle Scholar
  179. 179.
    Lacerda, L., Herrero, M.A., Venner, K., Bianco, A., Prato, M., Kostarelos, K.: Carbon-nanotube shape and individualization critical for renal excretion. Small. 4(8), 1130–1132 (2008).  https://doi.org/10.1002/smll.200800323CrossRefGoogle Scholar
  180. 180.
    Liang, X., Wang, H., Zhu, Y., Zhang, R., Cogger, V.C., Liu, X., Xu, Z.P., Grice, J.E., Roberts, M.S.: Short- and long-term tracking of anionic ultrasmall nanoparticles in kidney. ACS Nano. 10(1), 387–395 (2016).  https://doi.org/10.1021/acsnano.5b05066CrossRefGoogle Scholar
  181. 181.
    Spill, F., Reynolds, D.S., Kamm, R.D., Zaman, M.H.: Impact of the physical microenvironment on tumor progression and metastasis. Curr. Opin. Biotechnol. 40, 41–48 (2016).  https://doi.org/10.1016/j.copbio.2016.02.007CrossRefGoogle Scholar
  182. 182.
    Reisfeld, R.A.: The tumor microenvironment: a target for combination therapy of breast cancer. Crit. Rev. Oncog. 18(1-2), 115–133 (2013)CrossRefGoogle Scholar
  183. 183.
    Wang, L.C., Lo, A., Scholler, J., Sun, J., Majumdar, R.S., Kapoor, V., Antzis, M., Cotner, C.E., Johnson, L.A., Durham, A.C., Solomides, C.C., June, C.H., Pure, E., Albelda, S.M.: Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol. Res. 2(2), 154–166 (2014).  https://doi.org/10.1158/2326-6066.CIR-13-0027CrossRefGoogle Scholar
  184. 184.
    Linton, S.S., Sherwood, S.G., Drews, K.C., Kester, M.: Targeting cancer cells in the tumor microenvironment: opportunities and challenges in combinatorial nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8(2), 208–222 (2016).  https://doi.org/10.1002/wnan.1358CrossRefGoogle Scholar
  185. 185.
    Milane, L., Duan, Z., Amiji, M.: Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Mol. Pharm. 8(1), 185–203 (2011).  https://doi.org/10.1021/mp1002653CrossRefGoogle Scholar
  186. 186.
    Yoo, J.W., Chambers, E., Mitragotri, S.: Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr. Pharm. Des. 16(21), 2298–2307 (2010)CrossRefGoogle Scholar
  187. 187.
    Padera, T.P., Stoll, B.R., Tooredman, J.B., Capen, D., di Tomaso, E., Jain, R.K.: Pathology: cancer cells compress intratumour vessels. Nature. 427(6976), 695 (2004).  https://doi.org/10.1038/427695aCrossRefGoogle Scholar
  188. 188.
    Vaupel, P., Mayer, A.: Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 26(2), 225–239 (2007).  https://doi.org/10.1007/s10555-007-9055-1CrossRefGoogle Scholar
  189. 189.
    Denison, T.A., Bae, Y.H.: Tumor heterogeneity and its implication for drug delivery. J. Control. Release. 164(2), 187–191 (2012).  https://doi.org/10.1016/j.jconrel.2012.04.014CrossRefGoogle Scholar
  190. 190.
    Harris, A.L.: Hypoxia--a key regulatory factor in tumour growth. Nat. Rev. Cancer. 2(1), 38–47 (2002).  https://doi.org/10.1038/nrc704MathSciNetCrossRefGoogle Scholar
  191. 191.
    Jain, R.K., Stylianopoulos, T.: Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7(11), 653–664 (2010).  https://doi.org/10.1038/nrclinonc.2010.139CrossRefGoogle Scholar
  192. 192.
    Stylianopoulos, T., Poh, M.Z., Insin, N., Bawendi, M.G., Fukumura, D., Munn, L.L., Jain, R.K.: Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys. J. 99(5), 1342–1349 (2010).  https://doi.org/10.1016/j.bpj.2010.06.016CrossRefGoogle Scholar
  193. 193.
    Lieleg, O., Baumgartel, R.M., Bausch, A.R.: Selective filtering of particles by the extracellular matrix: an electrostatic bandpass. Biophys. J. 97(6), 1569–1577 (2009).  https://doi.org/10.1016/j.bpj.2009.07.009CrossRefGoogle Scholar
  194. 194.
    Boucher, Y., Baxter, L.T., Jain, R.K.: Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res. 50(15), 4478–4484 (1990)Google Scholar
  195. 195.
    Polyak, K., Haviv, I., Campbell, I.G.: Co-evolution of tumor cells and their microenvironment. Trends Genet. 25(1), 30–38 (2009).  https://doi.org/10.1016/j.tig.2008.10.012CrossRefGoogle Scholar
  196. 196.
    Cabarcas, S.M., Mathews, L.A., Farrar, W.L.: The cancer stem cell niche--there goes the neighborhood? Int. J. Cancer. 129(10), 2315–2327 (2011).  https://doi.org/10.1002/ijc.26312CrossRefGoogle Scholar
  197. 197.
    Yameen, B., Choi, W.I., Vilos, C., Swami, A., Shi, J., Farokhzad, O.C.: Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release. 190, 485–499 (2014).  https://doi.org/10.1016/j.jconrel.2014.06.038CrossRefGoogle Scholar
  198. 198.
    Veiga, E., Cossart, P.: Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nat. Cell Biol. 7(9), 894–900 (2005).  https://doi.org/10.1038/ncb1292CrossRefGoogle Scholar
  199. 199.
    Tsuji, T., Yoshitomi, H., Usukura, J.: Endocytic mechanism of transferrin-conjugated nanoparticles and the effects of their size and ligand number on the efficiency of drug delivery. Microscopy (Oxf). 62(3), 341–352 (2013).  https://doi.org/10.1093/jmicro/dfs080CrossRefGoogle Scholar
  200. 200.
    Shete, H.K., Prabhu, R.H., Patravale, V.B.: Endosomal escape: a bottleneck in intracellular delivery. J. Nanosci. Nanotechnol. 14(1), 460–474 (2014)CrossRefGoogle Scholar
  201. 201.
    Whitehead, K.A., Langer, R., Anderson, D.G.: Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8(2), 129–138 (2009)CrossRefGoogle Scholar
  202. 202.
    Schroeder, A., Levins, C.G., Cortez, C., Langer, R., Anderson, D.G.: Lipid-based nanotherapeutics for siRNA delivery. J. Intern. Med. 267(1), 9–21 (2010).  https://doi.org/10.1111/j.1365-2796.2009.02189.xCrossRefGoogle Scholar
  203. 203.
    Varkouhi, A.K., Scholte, M., Storm, G., Haisma, H.J.: Endosomal escape pathways for delivery of biologicals. J. Control. Release. 151(3), 220–228. S0168-3659(10)00905-3 (2011).  https://doi.org/10.1016/j.jconrel.2010.11.004CrossRefGoogle Scholar
  204. 204.
    Cheng, X., Lee, R.J.: The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 99 (Pt A). 129–137 (2016).  https://doi.org/10.1016/j.addr.2016.01.022CrossRefGoogle Scholar
  205. 205.
    Kauffman, K.J., Webber, M.J., Anderson, D.G.: Materials for non-viral intracellular delivery of messenger RNA therapeutics. J. Control. Release. (2015).  https://doi.org/10.1016/j.jconrel.2015.12.032CrossRefGoogle Scholar
  206. 206.
    Gratton, S.E., Ropp, P.A., Pohlhaus, P.D., Luft, J.C., Madden, V.J., Napier, M.E., DeSimone, J.M.: The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U. S. A. 105(33), 11613–11618 (2008).  https://doi.org/10.1073/pnas.0801763105CrossRefGoogle Scholar
  207. 207.
    Jiang, W., Kim, B.Y., Rutka, J.T., Chan, W.C.: Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3(3), 145–150. nnano.2008.30 (2008).  https://doi.org/10.1038/nnano.2008.30CrossRefGoogle Scholar
  208. 208.
    Leserman, L.D., Barbet, J., Kourilsky, F., Weinstein, J.N.: Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature. 288(5791), 602–604 (1980)CrossRefGoogle Scholar
  209. 209.
    Heath, T.D., Fraley, R.T., Papahdjopoulos, D.: Antibody targeting of liposomes: cell specificity obtained by conjugation of F(ab')2 to vesicle surface. Science. 210(4469), 539–541 (1980)CrossRefGoogle Scholar
  210. 210.
    Torchilin, V.P.: Immunoliposomes and PEGylated immunoliposomes: possible use for targeted delivery of imaging agents. Immunomethods. 4(3), 244–258 (1994)CrossRefGoogle Scholar
  211. 211.
    Kamaly, N., Kalber, T., Thanou, M., Bell, J.D., Miller, A.D.: Folate receptor targeted bimodal liposomes for tumor magnetic resonance imaging. Bioconjug. Chem. 20(4), 648–655 (2009).  https://doi.org/10.1021/bc8002259CrossRefGoogle Scholar
  212. 212.
    Gallo, J., Kamaly, N., Lavdas, I., Stevens, E., Nguyen, Q.D., Wylezinska-Arridge, M., Aboagye, E.O., Long, N.J.: CXCR4-targeted and MMP-responsive iron oxide nanoparticles for enhanced magnetic resonance imaging. Angew. Chem. Int. Ed. Engl. 53(36), 9550–9554 (2014).  https://doi.org/10.1002/anie.201405442CrossRefGoogle Scholar
  213. 213.
    Kirpotin, D.B., Drummond, D.C., Shao, Y., Shalaby, M.R., Hong, K., Nielsen, U.B., Marks, J.D., Benz, C.C., Park, J.W.: Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 66(13), 6732–6740 (2006).  https://doi.org/10.1158/0008-5472.CAN-05-4199CrossRefGoogle Scholar
  214. 214.
    Bartlett, D.W., Su, H., Hildebrandt, I.J., Weber, W.A., Davis, M.E.: Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl. Acad. Sci. U. S. A. 104(39), 15549–15554 (2007).  https://doi.org/10.1073/pnas.0707461104CrossRefGoogle Scholar
  215. 215.
    Teesalu, T., Sugahara, K.N., Ruoslahti, E.: Tumor-penetrating peptides. Front. Oncol. 3, 216 (2013).  https://doi.org/10.3389/fonc.2013.00216CrossRefGoogle Scholar
  216. 216.
    Matsumura, Y., Gotoh, M., Muro, K., Yamada, Y., Shirao, K., Shimada, Y., Okuwa, M., Matsumoto, S., Miyata, Y., Ohkura, H., Chin, K., Baba, S., Yamao, T., Kannami, A., Takamatsu, Y., Ito, K., Takahashi, K.: Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann. Oncol. 15(3), 517–525 (2004)CrossRefGoogle Scholar
  217. 217.
    Mamot, C., Ritschard, R., Wicki, A., Stehle, G., Dieterle, T., Bubendorf, L., Hilker, C., Deuster, S., Herrmann, R., Rochlitz, C.: Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol. 13(12), 1234–1241 (2012).  https://doi.org/10.1016/S1470-2045(12)70476-XCrossRefGoogle Scholar
  218. 218.
  219. 219.
    Sankhala, K.K., Mita, A.C., Adinin, R., Wood, L., Beeram, M., Bullock, S., Yamagata, N., Matsuno, K., Fujisawa, T., Phan, A.: A phase I pharmacokinetic (PK) study of MBP-426, a novel liposome encapsulated oxaliplatin. J. Clin. Oncol. 27(Abstract no: 2535), 15S (2009)Google Scholar
  220. 220.
    Geretti, E., Leonard, S.C., Dumont, N., Lee, H., Zheng, J., De Souza, R., Gaddy, D.F., Espelin, C.W., Jaffray, D.A., Moyo, V., Nielsen, U.B., Wickham, T.J., Hendriks, B.S.: Cyclophosphamide-mediated tumor priming for enhanced delivery and antitumor activity of HER2-targeted liposomal doxorubicin (MM-302). Mol. Cancer Ther. 14(9), 2060–2071 (2015).  https://doi.org/10.1158/1535-7163.MCT-15-0314CrossRefGoogle Scholar
  221. 221.
    Cheng, Z., Al Zaki, A., Hui, J.Z., Muzykantov, V.R., Tsourkas, A.: Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science. 338(6109), 903–910 (2012).  https://doi.org/10.1126/science.1226338CrossRefGoogle Scholar
  222. 222.
  223. 223.
    Heidel, J.D., Liu, J.Y., Yen, Y., Zhou, B., Heale, B.S., Rossi, J.J., Bartlett, D.W., Davis, M.E.: Potent siRNA inhibitors of ribonucleotide reductase subunit RRM2 reduce cell proliferation in vitro and in vivo. Clin. Cancer Res. 13(7), 2207–2215 (2007).  https://doi.org/10.1158/1078-0432.CCR-06-2218CrossRefGoogle Scholar
  224. 224.
    Bareford, L.M., Swaan, P.W.: Endocytic mechanisms for targeted drug delivery. Adv. Drug Deliv. Rev. 59(8), 748–758 (2007)CrossRefGoogle Scholar
  225. 225.
    Seibel, P., Trappe, J., Villani, G., Klopstock, T., Papa, S., Reichmann, H.: Transfection of mitochondria: strategy towards a gene therapy of mitochondrial DNA diseases. Nucleic Acids Res. 23(1), 10–17 (1995)CrossRefGoogle Scholar
  226. 226.
    Weissig, V., Torchilin, V.P.: Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems. Adv. Drug Deliv. Rev. 49(1-2), 127–149 (2001)CrossRefGoogle Scholar
  227. 227.
    Longley, D.B., Johnston, P.G.: Molecular mechanisms of drug resistance. J. Pathol. 205(2), 275–292 (2005).  https://doi.org/10.1002/path.1706CrossRefGoogle Scholar
  228. 228.
    Abdullah, L.N., Chow, E.K.: Mechanisms of chemoresistance in cancer stem cells. Clin. Transl. Med. 2(1), 3 (2013).  https://doi.org/10.1186/2001-1326-2-3CrossRefGoogle Scholar
  229. 229.
    Chow, E.K.-H., L-l, F., Chen, X., Bishop, J.M.: Oncogene-specific formation of chemoresistant murine hepatic cancer stem cells. Hepatology (Baltimore, Md). 56(4), 1331–1341 (2012).  https://doi.org/10.1002/hep.25776CrossRefGoogle Scholar
  230. 230.
    Chow, E.K., Ho, D.: Cancer nanomedicine: from drug delivery to imaging. Sci. Transl. Med. 5(216), 216rv214 (2013).  https://doi.org/10.1126/scitranslmed.3005872CrossRefGoogle Scholar
  231. 231.
    Tardi, P.G., Dos Santos, N., Harasym TO, Johnstone, S.A., Zisman, N., Tsang, A.W., Bermudes, D.G., Mayer, L.D.: Drug ratio-dependent antitumor activity of irinotecan and cisplatin combinations in vitro and in vivo. Mol. Cancer Ther. 8(8), 2266–2275 (2009).  https://doi.org/10.1158/1535-7163.MCT-09-0243CrossRefGoogle Scholar
  232. 232.
    Zhang, Y.F., Wang, J.C., Bian, D.Y., Zhang, X., Zhang, Q.: Targeted delivery of RGD-modified liposomes encapsulating both combretastatin A-4 and doxorubicin for tumor therapy: in vitro and in vivo studies. Eur. J. Pharm. Biopharm. 74(3), 467–473 (2010).  https://doi.org/10.1016/j.ejpb.2010.01.002CrossRefGoogle Scholar
  233. 233.
    Yang, Y., Hu, Y., Wang, Y., Li, J., Liu, F., Huang, L.: Nanoparticle delivery of pooled siRNA for effective treatment of non-small cell lung cancer. Mol. Pharm. 9(8), 2280–2289 (2012).  https://doi.org/10.1021/mp300152vCrossRefGoogle Scholar
  234. 234.
    Lv, S., Tang, Z., Li, M., Lin, J., Song, W., Liu, H., Huang, Y., Zhang, Y., Chen, X.: Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials. 35(23), 6118–6129 (2014).  https://doi.org/10.1016/j.biomaterials.2014.04.034CrossRefGoogle Scholar
  235. 235.
    Duan, X., Xiao, J., Yin, Q., Zhang, Z., Yu, H., Mao, S., Li, Y.: Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano. 7(7), 5858–5869 (2013).  https://doi.org/10.1021/nn4010796CrossRefGoogle Scholar
  236. 236.
    Tang, S., Yin, Q., Su, J., Sun, H., Meng, Q., Chen, Y., Chen, L., Huang, Y., Gu, W., Xu, M., Yu, H., Zhang, Z., Li, Y.: Inhibition of metastasis and growth of breast cancer by pH-sensitive poly (beta-amino ester) nanoparticles co-delivering two siRNA and paclitaxel. Biomaterials. 48, 1–15 (2015).  https://doi.org/10.1016/j.biomaterials.2015.01.049CrossRefGoogle Scholar
  237. 237.
    Guan, S., Rosenecker, J.: Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther. 24(3), 133–143 (2017).  https://doi.org/10.1038/gt.2017.5CrossRefGoogle Scholar
  238. 238.
    Liu, C., Zhang, L., Liu, H., Cheng, K.: Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J. Control. Release. 266, 17–26 (2017).  https://doi.org/10.1016/j.jconrel.2017.09.012CrossRefGoogle Scholar
  239. 239.
    Juliano, R.L.: The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 44(14), 6518–6548 (2016).  https://doi.org/10.1093/nar/gkw236CrossRefGoogle Scholar
  240. 240.
    Bramsen, J.B., Kjems, J.: Development of therapeutic-grade small interfering RNAs by chemical engineering. Front. Genet. 3, 154 (2012).  https://doi.org/10.3389/fgene.2012.00154CrossRefGoogle Scholar
  241. 241.
    Barve, M., Wang, Z., Kumar, P., Jay, C.M., Luo, X., Bedell, C., Mennel, R.G., Wallraven, G., Brunicardi, F.C., Senzer, N., Nemunaitis, J., Rao, D.D.: Phase 1 Trial of Bi-shRNA STMN1 BIV in Refractory Cancer. Mol. Ther. 23(6), 1123–1130 (2015).  https://doi.org/10.1038/mt.2015.14CrossRefGoogle Scholar
  242. 242.
    Beg, M.S., Brenner, A.J., Sachdev, J., Borad, M., Kang, Y.K., Stoudemire, J., Smith, S., Bader, A.G., Kim, S., Hong, D.S.: Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest. New Drugs. 35(2), 180–188 (2017).  https://doi.org/10.1007/s10637-016-0407-yCrossRefGoogle Scholar
  243. 243.
    Beg, M.S., Brenner, A.J., Sachdev, J., Borad, M., Kang, Y.K., Stoudemire, J., Smith, S., Bader, A.G., Kim, S., Hong, D.S.: Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest. New Drugs. 35(2), 180-188 (2017).  https://doi.org/10.1007/s10637-016-0407-yCrossRefGoogle Scholar
  244. 244.
    van Zandwijk, N., Pavlakis, N., Kao, S.C., Linton, A., Boyer, M.J., Clarke, S., Huynh, Y., Chrzanowska, A., Fulham, M.J., Bailey, D.L., Cooper, W.A., Kritharides, L., Ridley, L., Pattison, S.T., MacDiarmid, J., Brahmbhatt, H., Reid, G.: Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 18(10), 1386–1396 (2017).  https://doi.org/10.1016/S1470-2045(17)30621-6CrossRefGoogle Scholar
  245. 245.
    Wagner, M.J., Mitra, R., McArthur, M.J., Baze, W., Barnhart, K., Wu, S.Y., Rodriguez-Aguayo, C., Zhang, X., Coleman, R.L., Lopez-Berestein, G., Sood, A.K.: Preclinical Mammalian Safety Studies of EPHARNA (DOPC Nanoliposomal EphA2-Targeted siRNA). Mol. Cancer Ther. 16(6), 1114–1123 (2017).  https://doi.org/10.1158/1535-7163.MCT-16-0541CrossRefGoogle Scholar
  246. 246.
    Santel, A., Aleku, M., Keil, O., Endruschat, J., Esche, V., Fisch, G., Dames, S., Loffler, K., Fechtner, M., Arnold, W., Giese, K., Klippel, A., Kaufmann, J.: A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther. 13(16), 1222–1234 (2006).  https://doi.org/10.1038/sj.gt.3302777CrossRefGoogle Scholar
  247. 247.
    Gilleron, J., Querbes, W., Zeigerer, A., Borodovsky, A., Marsico, G., Schubert, U., Manygoats, K., Seifert, S., Andree, C., Stoter, M., Epstein-Barash, H., Zhang, L., Koteliansky, V., Fitzgerald, K., Fava, E., Bickle, M., Kalaidzidis, Y., Akinc, A., Maier, M., Zerial, M.: Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31(7), 638–646 (2013).  https://doi.org/10.1038/nbt.2612CrossRefGoogle Scholar
  248. 248.
    Sahay, G., Querbes, W., Alabi, C., Eltoukhy, A., Sarkar, S., Zurenko, C., Karagiannis, E., Love, K., Chen, D., Zoncu, R., Buganim, Y., Schroeder, A., Langer, R., Anderson, D.G.: Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 31(7), 653–658 (2013).  https://doi.org/10.1038/nbt.2614CrossRefGoogle Scholar
  249. 249.
    Goldberg, M.S.: Immunoengineering: how nanotechnology can enhance cancer immunotherapy. Cell. 161(2), 201–204 (2015).  https://doi.org/10.1016/j.cell.2015.03.037CrossRefGoogle Scholar
  250. 250.
    Rossmann, E., Osterborg, A., Lofvenberg, E., Choudhury, A., Forssmann, U., von Heydebreck, A., Schroder, A., Mellstedt, H.: Mucin 1-specific active cancer immunotherapy with tecemotide (L-BLP25) in patients with multiple myeloma: an exploratory study. Hum. Vaccin. Immunother. 10(11), 3394–3408 (2014).  https://doi.org/10.4161/hv.29918CrossRefGoogle Scholar
  251. 251.
    Samuel, J., Budzynski, W.A., Reddish, M.A., Ding, L., Zimmermann, G.L., Krantz, M.J., Koganty, R.R., Longenecker, B.M.: Immunogenicity and antitumor activity of a liposomal MUC1 peptide-based vaccine. Int. J. Cancer. 75(2), 295–302 (1998)CrossRefGoogle Scholar
  252. 252.
    Butts, C., Socinski, M.A., Mitchell, P.L., Thatcher, N., Havel, L., Krzakowski, M., Nawrocki, S., Ciuleanu, T.E., Bosquee, L., Trigo, J.M., Spira, A., Tremblay, L., Nyman, J., Ramlau, R., Wickart-Johansson, G., Ellis, P., Gladkov, O., Pereira, J.R., Eberhardt, W.E., Helwig, C., Schroder, A., Shepherd, F.A., St, t.: Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol. 15(1), 59–68 (2014).  https://doi.org/10.1016/S1470-2045(13)70510-2CrossRefGoogle Scholar
  253. 253.
    Thomas, A., Giaccone, G.: Why has active immunotherapy not worked in lung cancer? Ann. Oncol. 26(11), 2213–2220 (2015).  https://doi.org/10.1093/annonc/mdv323CrossRefGoogle Scholar
  254. 254.
    Hamilton, E., Blackwell, K., Hobeika, A.C., Clay, T.M., Broadwater, G., Ren, X.R., Chen, W., Castro, H., Lehmann, F., Spector, N., Wei, J., Osada, T., Lyerly, H.K., Morse, M.A.: Phase 1 clinical trial of HER2-specific immunotherapy with concomitant HER2 kinase inhibition [corrected]. J. Transl. Med. 10, 28 (2012).  https://doi.org/10.1186/1479-5876-10-28CrossRefGoogle Scholar
  255. 255.
    Kager, L., Potschger, U., Bielack, S.: Review of mifamurtide in the treatment of patients with osteosarcoma. Ther. Clin. Risk Manag. 6, 279–286 (2010)CrossRefGoogle Scholar
  256. 256.
    Libutti, S.K., Paciotti, G.F., Byrnes, A.A., Alexander Jr., H.R., Gannon, W.E., Walker, M., Seidel, G.D., Yuldasheva, N., Tamarkin, L.: Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin. Cancer Res. 16(24), 6139–6149 (2010).  https://doi.org/10.1158/1078-0432.CCR-10-0978CrossRefGoogle Scholar
  257. 257.
    Min, Y., Caster, J.M., Eblan, M.J., Wang, A.Z.: Clinical translation of nanomedicine. Chem. Rev. (2015).  https://doi.org/10.1021/acs.chemrev.5b00116CrossRefGoogle Scholar
  258. 258.
    Mura, S., Couvreur, P.: Nanotheranostics for personalized medicine. Adv. Drug Deliv. Rev. 64(13), 1394–1416 (2012).  https://doi.org/10.1016/j.addr.2012.06.006CrossRefGoogle Scholar
  259. 259.
    Tyner, K.M., Zou, P., Yang, X., Zhang, H., Cruz, C.N., Lee, S.L.: Product quality for nanomaterials: current U.S. experience and perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(5), 640–654 (2015).  https://doi.org/10.1002/wnan.1338CrossRefGoogle Scholar
  260. 260.
    Farokhzad, O.C.: Nanotechnology for drug delivery: the perfect partnership. Expert Opin. Drug Deliv. 5(9), 927–929 (2008).  https://doi.org/10.1517/17425247.5.9.927CrossRefGoogle Scholar
  261. 261.
    Goldberg, M.S., Hook, S.S., Wang, A.Z., Bulte, J.W.M., Patri, A.K., Uckun, F.M., Cryns, V.L., Hanes, J., Akin, D., Hall, J.B., Gharkholo, N., Mumper, R.J.: Biotargeted nanomedicines for cancer: six tenets before you begin. Nanomedicine (Lond.). 8(2), 299–308 (2013).  https://doi.org/10.2217/nnm.13.3CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • Bomy Lee Chung
    • 1
  • Joseph Kaplinsky
    • 2
  • Robert Langer
    • 1
  • Nazila Kamaly
    • 2
    Email author
  1. 1.David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Chemical EngineeringCambridgeUSA
  2. 2.Technical University of Denmark. Department of Micro and Nanotechnology, DTU NanotechLyngbyDenmark

Personalised recommendations