Advertisement

Translational Nanodiagnostics for In Vivo Cancer Detection

  • Christina H. LiuEmail author
  • Pushpa TandonEmail author
  • Luisa M. Russell
Chapter
Part of the Bioanalysis book series (BIOANALYSIS, volume 5)

Abstract

Nanotechnology-enabled tools and techniques have revolutionized the field of analytical assays with significantly increased sensitivity for in vitro and in vivo measurements of biomolecules for early detection of disease and evaluation of therapeutic efficacy – termed nanodiagnostics. With the ability to detect low-abundant biomolecules below the conventional detection limits in small biological samples, in vitro nanodiagnostics are poised to have a significant impact on cancer prevention and precision medicine. However, in vitro nanodiagnostics do not give detailed anatomical information which can only be available through in vivo imaging. In this regard, nanoparticles can play an important role in the diagnosis of cancers, both as imaging contrast agents for almost every existing modality and as “theranostic” agents, able to serve both diagnostic and therapeutic purposes. Even though newer generation powerful medical imaging tools and methods have been developed and accepted in the clinics, in vivo nanodiagnostics have not enjoyed a smooth path in clinical translation. In addition to the known difficulty of inconsistent NP production, several reasons can attribute to such shortcomings. Some examples include in vivo distribution and toxicity (e.g., quantum dots), lack of market viability (e.g., iron oxide nanoparticles), and lack of gold standards and validations (e.g., imaging biomarkers). In this chapter, we briefly review the nanoparticles that have been developed for diagnostic or theranostic purposes by modality. We also discuss established and emerging nanomedicines for diagnostics and challenges faced in the development of these nanoparticle diagnostic agents, as well as future perspectives for the field in clinical applications.

Keywords

Cancer Diagnostic Theranostic Nanodiagnostic Nanomedicine Clinical imaging Preclinical imaging Nanoparticles In vivo imaging Imaging agents Contrast agents Iron oxide nanoparticles Ferumoxytol FDA Clinical translation Clinical trials Magnetic resonance Optical imaging Nuclear medicine Ultrasound imaging Photoacoustic imaging Multimodal imaging Surface-enhanced Raman spectroscopy In vitro diagnostics In vivo diagnostics 

References

  1. 1.
    Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. (2013). http://globocan.iarc.fr.2018Q5Google Scholar
  2. 2.
    NCI.: Cancer statistics. https://www.cancer.gov/about-cancer/understanding/statistics. (2018). Accessed 27 April 2018
  3. 3.
    Hu, D., Zhang, J., Gao, G., Sheng, Z., Cui, H., Cai, L.: Indocyanine green-loaded Polydopamine-reduced graphene oxide nanocomposites with amplifying photoacoustic and photothermal effects for cancer theranostics. Theranostics. 6, 1043–1052 (2016).  https://doi.org/10.7150/thno.14566CrossRefGoogle Scholar
  4. 4.
    Cairns, J.: The treatment of diseases and the war against cancer. Sci. Am. 253(5), 51–59 (1985)CrossRefGoogle Scholar
  5. 5.
    Cabral, H., Miyata, K., Kishimura, A.: Nanodevices for studying nano-pathophysiology. Adv. Drug Deliv. Rev. 74, 35–52 (2014).  https://doi.org/10.1016/j.addr.2014.06.003CrossRefGoogle Scholar
  6. 6.
    Park, S.M., Sabour, A.F., Son, J.H., Lee, S.H., Lee, L.P.: Toward integrated molecular diagnostic system (i MDx): principles and applications. I.E.E.E. Trans. Biomed. Eng. 61(5), 1506–1521 (2014).  https://doi.org/10.1109/TBME.2014.2309119CrossRefGoogle Scholar
  7. 7.
    Weissleder, R., Reimer, P., Lee, A.S., Wittenberg, J., Brady, T.J.: MR receptor imaging: ultrasmall iron oxide particles targeted to asialoglycoprotein receptors. AJR Am. J. Roentgenol. 155(6), 1161–1167 (1990).  https://doi.org/10.2214/ajr.155.6.2122660CrossRefGoogle Scholar
  8. 8.
    Matsumura, Y., Maeda, H.: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46(12 Pt 1), 6387–6392 (1986)Google Scholar
  9. 9.
    Ehlerding, E.B., Grodzinski, P., Cai, W., Liu, C.H.: Big potential from small agents: nanoparticles for imaging-based companion diagnostics. ACS Nano. 12(3), 2106–2121 (2018)CrossRefGoogle Scholar
  10. 10.
    Andreou, C., Kishore, S.A., Kircher, M.F.: Surface-enhanced Raman spectroscopy: a new modality for cancer imaging. J. Nucl. Med. 56, 1295–1299 (2015).  https://doi.org/10.2967/jnumed.115.158196CrossRefGoogle Scholar
  11. 11.
    García, K.P., Zarschler, K., Barbaro, L., Barreto, J.A., O’Malley, W., Spiccia, L., Stephan, H., Graham, B.: Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small. 10, 2516–2529 (2014).  https://doi.org/10.1002/smll.201303540CrossRefGoogle Scholar
  12. 12.
    Karakoti, A.S., Das, S., Thevuthasan, S., Seal, S.: PEGylated inorganic nanoparticles. Angew. Chem. Int. Ed. 50, 1980–1994 (2011).  https://doi.org/10.1002/anie.201002969CrossRefGoogle Scholar
  13. 13.
    Barenholz, Y.: Doxil(R)--the first FDA-approved Nano-drug: lessons learned. J. Control. Release. 160, 117–134 (2012).  https://doi.org/10.1016/j.jconrel.2012.03.020CrossRefGoogle Scholar
  14. 14.
    Kundranda, M.N., Niu, J.: Albumin-bound paclitaxel in solid tumors: clinical development and future directions. Drug Des. Devel. Ther. 9, 3767–3777 (2015).  https://doi.org/10.2147/DDDT.S88023CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Feridex. Whatever happened to Feridex®? Aren’t iron-containing contrast agents useful for liver MRI?. 2018. http://mriquestions.com/feridex-and-iron-oxides.html
  17. 17.
    Chen, M.-L.: Lipid excipients and delivery systems for pharmaceutical development: a regulatory perspective. Adv. Drug Deliv. Rev. 60, 768–777 (2008).  https://doi.org/10.1016/j.addr.2007.09.010CrossRefGoogle Scholar
  18. 18.
    Charron, D.M., Chen, J., Zheng, G.: Theranostic lipid nanoparticles for cancer medicine. In: Mirkin, C.A., Meade, T.J., Petrosko, S.H., Stegh, A.H. (eds.) Nanotechnology-based precision tools for the detection and treatment of cancer, pp. 103–127. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-16555-4_5Google Scholar
  19. 19.
    Xing, H., Hwang, K., Lu, Y.: Recent developments of liposomes as Nanocarriers for theranostic applications. Theranostics. 6, 1336–1352 (2016).  https://doi.org/10.7150/thno.15464CrossRefGoogle Scholar
  20. 20.
    Chen, F., Ehlerding, E.B., Cai, W.: Theranostic nanoparticles. J. Nucl. Med. 55, 1919–1922 (2014).  https://doi.org/10.2967/jnumed.114.146019CrossRefGoogle Scholar
  21. 21.
    Kang, H., Mintri, S., Menon, A.V., Lee, H.Y., Choi, H.S., Kim, J.: Pharmacokinetics, pharmacodynamics and toxicology of Theranostic nanoparticles. Nanoscale. 7, 18848–18862 (2015).  https://doi.org/10.1039/c5nr05264eCrossRefGoogle Scholar
  22. 22.
    Sharma, H., Mishra, P.K., Talegaonkar, S., Vaidya, B.: Metal nanoparticles: a theranostic nanotool against Cancer. Drug Discov. Today. 20, 1143–1151 (2015).  https://doi.org/10.1016/j.drudis.2015.05.009CrossRefGoogle Scholar
  23. 23.
    Kumar, R., Shin, W.S., Sunwoo, K., Kim, W.Y., Koo, S., Bhuniya, S., Kim, J.S.: Small conjugate-based theranostic agents: an encouraging approach for cancer therapy. Chem. Soc. Rev. 44, 6670–6683 (2015).  https://doi.org/10.1039/c5cs00224aCrossRefGoogle Scholar
  24. 24.
    Huang, H., Lovell, J.F.: Advanced functional nanomaterials for theranostics. Adv. Funct. Mater. 27, 1603524 (2017).  https://doi.org/10.1002/adfm.201603524CrossRefGoogle Scholar
  25. 25.
    Zhu, L., Zhou, Z., Mao, H., Yang, L.: Magnetic nanoparticles for precision oncology: Theranostic magnetic Iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine. 12, 73–87 (2017).  https://doi.org/10.2217/nnm-2016-0316CrossRefGoogle Scholar
  26. 26.
    Bashir, M.R., Bhatti, L., Marin, D., Nelson, R.C.: Emerging applications for Ferumoxytol as a contrast agent in MRI. J. Magn. Reson. Imaging. 41, 884–898 (2015).  https://doi.org/10.1002/jmri.24691CrossRefGoogle Scholar
  27. 27.
    Bernd, H., De Kerviler, E., Gaillard, S., Bonnemain, B.: Safety and tolerability of Ultrasmall superparamagnetic Iron oxide contrast agent: comprehensive analysis of a clinical development program. Investig. Radiol. 44, 336 (2009)CrossRefGoogle Scholar
  28. 28.
    Heesakkers, R.A., Jager, G.J., Hovels, A.M., de Hoop, B., van den Bosch, H.C., Raat, F., Witjes, J.A., Mulders, P.F., van der Kaa, C.H., Barentsz, J.O.: Prostate cancer: detection of lymph node metastases outside the routine surgical area with ferumoxtran-10-enhanced MR imaging. Radiology. 251(2), 408–414 (2009).  https://doi.org/10.1148/radiol.2512071018CrossRefGoogle Scholar
  29. 29.
    Rief, M., Wagner, M., Franiel, T., Bresan, V., Taupitz, M., Klessen, C., Hamm, B., Asbach, P.: Detection of focal liver lesions in unenhanced and Ferucarbotran-enhanced magnetic resonance imaging: a comparison of T2-weighted breath-hold and respiratory-triggered sequences. Magn. Reson. Imaging. 27, 1223–1229 (2009).  https://doi.org/10.1016/j.mri.2009.05.001CrossRefGoogle Scholar
  30. 30.
    Thakor, A.S., Jokerst, J.V., Ghanouni, P., Campbell, J.L., Mittra, E., Gambhir, S.S.: Clinically approved nanoparticle imaging agents. J. Nucl. Med. 57, 1833–1837 (2016).  https://doi.org/10.2967/jnumed.116.181362CrossRefGoogle Scholar
  31. 31.
    Daldrup-Link, H.E.: Ten things you might not know about Iron oxide nanoparticles. Radiology. 284(3), 616–629 (2017).  https://doi.org/10.1148/radiol.2017162759CrossRefGoogle Scholar
  32. 32.
    Finn, J.P., Nguyen, K.L., Han, F., Zhou, Z., Salusky, I., Ayad, I., Hu, P.: Cardiovascular MRI with ferumoxytol. Clin. Radiol. 71(8), 796–806 (2016).  https://doi.org/10.1016/j.crad.2016.03.020CrossRefGoogle Scholar
  33. 33.
    Toth, G.B., Varallyay, C.G., Horvath, A., Bashir, M.R., Choyke, P.L., Daldrup-Link, H.E., Dosa, E., Finn, J.P., Gahramanov, S., Harisinghani, M., Macdougall, I., Neuwelt, A., Vasanawala, S.S., Ambady, P., Barajas, R., Cetas, J.S., Ciporen, J., DeLoughery, T.J., Doolittle, N.D., Fu, R., Grinstead, J., Guimaraes, A.R., Hamilton, B.E., Li, X., McConnell, H.L., Muldoon, L.L., Nesbit, G., Netto, J.P., Petterson, D., Rooney, W.D., Schwartz, D., Szidonya, L., Neuwelt, E.A.: Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int. 92(1), 47–66 (2017).  https://doi.org/10.1016/j.kint.2016.12.037CrossRefGoogle Scholar
  34. 34.
    Chen, B., Li, Y., Zhang, X., Liu, F., Liu, Y., ji, M., Xiong, F., Gu, N.: An efficient synthesis of ferumoxytol induced by alternating-current magnetic field. Mater. Lett. 170, 93–96 (2016).  https://doi.org/10.1016/j.matlet.2016.02.006CrossRefGoogle Scholar
  35. 35.
    Hamilton, B.E., Woltjer, R.L., Prola-Netto, J., Nesbit, G.M., Gahramanov, S., Pham, T., Wagner, J., Neuwelt, E.A.: Ferumoxytol-enhanced MRI differentiation of meningioma from dural metastases: a pilot study with immunohistochemical observations. J. Neuro-Oncol. 129(2), 301–309 (2016).  https://doi.org/10.1007/s11060-016-2175-0CrossRefGoogle Scholar
  36. 36.
    Miller, M.A., Gadde, S., Pfirschke, C., Engblom, C., Sprachman, M.M., Kohler, R.H., Yang, K.S., Laughney, A.M., Wojtkiewicz, G., Kamaly, N., Bhonagiri, S., Pittet, M., Farokhzad, O.C., Weissleder, R.: Predicting therapeutic nanoparticle efficacy using a companion MR imaging nanoparticle. Sci. Transl. Med. 7, 314ra183 (2015).  https://doi.org/10.1126/scitranslmed.aac6522CrossRefGoogle Scholar
  37. 37.
    Tagami, T., Foltz, W.D., Ernsting, M.J., Lee, C.M., Tannock, I.F., May, J.P., Li, S.-D.: MRI monitoring of Intratumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome. Biomaterials. 32, 6570–6578 (2011).  https://doi.org/10.1016/j.biomaterials.2011.05.029CrossRefGoogle Scholar
  38. 38.
    Panagiotopoulos, N., Duschka, R.L., Ahlborg, M., Bringout, G., Debbeler, C., Graeser, M., Kaethner, C., Ludtke-Buzug, K., Medimagh, H., Stelzner, J., Buzug, T.M., Barkhausen, J., Vogt, F.M., Haegele, J.: Magnetic particle imaging: current developments and future directions. Int. J. Nanomedicine. 10, 3097–3114 (2015).  https://doi.org/10.2147/IJN.S70488CrossRefGoogle Scholar
  39. 39.
    Khandhar, A.P., Ferguson, R.M., Arami, H., Krishnan, K.M.: Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging. Biomaterials. 34(15), 3837–3845 (2013).  https://doi.org/10.1016/j.biomaterials.2013.01.087CrossRefGoogle Scholar
  40. 40.
    Song, G., Chen, M., Zhang, Y., Cui, L., Qu, H., Zheng, X., Wintermark, M., Liu, Z., Rao, J.: Janus Iron oxides @ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging. Nano Lett. 18(1), 182–189 (2018).  https://doi.org/10.1021/acs.nanolett.7b03829CrossRefGoogle Scholar
  41. 41.
    Wolfbeis, O.S.: An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 44, 4743–4768 (2015).  https://doi.org/10.1039/c4cs00392fCrossRefGoogle Scholar
  42. 42.
    Chinnathambi, S., Chen, S., Ganesan, S., Hanagata, N.: Silicon quantum dots for biological applications. Adv. Healthc. Mater. 3(1), 10–29 (2014).  https://doi.org/10.1002/adhm.201300157CrossRefGoogle Scholar
  43. 43.
    Song, J., Qu, J., Swihart, M.T., Prasad, P.N.: Near-IR responsive nanostructures for nanobiophotonics: emerging impacts on nanomedicine. Nanomedicine. 12(3), 771–788 (2016).  https://doi.org/10.1016/j.nano.2015.11.009CrossRefGoogle Scholar
  44. 44.
    Hill, T.K., Kelkar, S.S., Wojtynek, N.E., Souchek, J.J., Payne, W.M., Stumpf, K., Marini, F.C., Mohs, A.M.: Near infrared fluorescent nanoparticles derived from hyaluronic acid improve tumor contrast for image-guided surgery. Theranostics. 6(13), 2314–2328 (2016).  https://doi.org/10.7150/thno.16514CrossRefGoogle Scholar
  45. 45.
    Hill, T.K., Abdulahad, A., Kelkar, S.S., Marini, F.C., Long, T.E., Provenzale, J.M., Mohs, A.M.: Indocyanine green-loaded nanoparticles for image-guided tumor surgery. Bioconjug. Chem. 26(2), 294–303 (2015).  https://doi.org/10.1021/bc5005679CrossRefGoogle Scholar
  46. 46.
    Bradbury, M.S., Phillips, E., Montero, P.H., Cheal, S.M., Stambuk, H., Durack, J.C., Sofocleous, C.T., Meester, R.J., Wiesner, U., Patel, S.: Clinically-translated silica nanoparticles as dual-modalitycancer-targeted probes for image-guided surgery and interventions. Integr. Biol. (Camb). 5, 74–86 (2013).  https://doi.org/10.1039/c2ib20174gCrossRefGoogle Scholar
  47. 47.
    Srivatsan, A., Chen, X.: Recent advances in nanoparticle-based nuclear imaging of cancers. Adv. Cancer Res. 124, 83–129 (2014).  https://doi.org/10.1016/B978-0-12-411638-2.00003-3CrossRefGoogle Scholar
  48. 48.
    Polyak, A., Ross, T.L.: Nanoparticles for SPECT and PET imaging: towards personalized medicine and theranostics. Curr. Med. Chem. (2017).  https://doi.org/10.2174/0929867324666170830095553
  49. 49.
    Kazuma, S.M., Sultan, D., Zhao, Y., Detering, L., You, M., Luehmann, H.P., Abdalla, D.S., Liu, Y.: Recent advances of radionuclide-based molecular imaging of atherosclerosis. Curr. Pharm. Des. 21(36), 5267–5276 (2015)CrossRefGoogle Scholar
  50. 50.
    Garcia, J., Tang, T., Louie, A.Y.: Nanoparticle-based multimodal PET/MRI probes. Nanomedicine. 10(8), 1343–1359 (2015)CrossRefGoogle Scholar
  51. 51.
    Jimenez, I.R., Roca, M., Vega, E., Garcia, M.L., Benitez, A., Bajen, M., Martin-Comin, J.: Particle sizes of colloids to be used in sentinel lymph node radiolocalization. Nucl. Med. Commun. 29(2), 166–172 (2008).  https://doi.org/10.1097/MNM.0b013e3282f258d9CrossRefGoogle Scholar
  52. 52.
    Gommans, G.M., van Dongen, A., van der Schors, T.G., Gommans, E., Visser, J.F., Clarijs, W.W., de Waard, J.W., van de Bos, J., Boer, R.O.: Further optimisation of 99mTc-Nanocoll sentinel node localisation in carcinoma of the breast by improved labelling. Eur. J. Nucl. Med. 28(10), 1450–1455 (2001).  https://doi.org/10.1007/s002590100590CrossRefGoogle Scholar
  53. 53.
    Jimenez-Heffernan, A., Ellmann, A., Sado, H., Huic, D., Bal, C., Parameswaran, R., Giammarile, F., Pruzzo, R., Kostadinova, I., Vorster, M., Almeida, P., Santiago, J., Gambhir, S., Sergieva, S., Calderon, A., Young, G.O., Valdes-Olmos, R., Zaknun, J., Magboo, V.P., Pascual, T.N.: Results of a prospective multicenter International Atomic Energy Agency sentinel node trial on the value of SPECT/CT over planar imaging in various malignancies. J. Nucl. Med. 56(9), 1338–1344 (2015).  https://doi.org/10.2967/jnumed.114.153643CrossRefGoogle Scholar
  54. 54.
    Seim, N.B., Wright, C.L., Agrawal, A.: Contemporary use of sentinel lymph node biopsy in the head and neck. World J. Otorhinolaryngol Head Neck Surg. 2(2), 117–125 (2016).  https://doi.org/10.1016/j.wjorl.2016.05.008CrossRefGoogle Scholar
  55. 55.
    Lusic, H., Grinstaff, M.W.: X-ray-computed tomography contrast agents. Chem. Rev. 113(3), 1641–1666 (2013).  https://doi.org/10.1021/cr200358sCrossRefGoogle Scholar
  56. 56.
    Ashton, J.R., West, J.L., Badea, C.T.: In Vivo small animal micro-CT using nanoparticle contrast agents. Front. Pharmacol. 6, 256 (2015).  https://doi.org/10.3389/fphar.2015.00256CrossRefGoogle Scholar
  57. 57.
    Badea, C.T., Athreya, K.K., Espinosa, G., Clark, D., Ghafoori, A.P., Li, Y., Kirsch, D.G., Johnson, G.A., Annapragada, A., Ghaghada, K.B.: Computed tomography imaging of primary lung Cancer in mice using a liposomal-iodinated contrast agent. PLoS One. 7, e34496 (2012).  https://doi.org/10.1371/journal.pone.0034496CrossRefGoogle Scholar
  58. 58.
    Cormode, D.P., Naha, P.C., Fayad, Z.A.: Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol. Imaging. 9(1), 37–52 (2014).  https://doi.org/10.1002/cmmi.1551CrossRefGoogle Scholar
  59. 59.
    Curry, T., Kopelman, R., Shilo, M., Popovtzer, R.: Multifunctional Theranostic gold nanoparticles for targeted CT imaging and Photothermal therapy. Contrast Media Mol. Imaging. 9, 53–61 (2014).  https://doi.org/10.1002/cmmi.1563CrossRefGoogle Scholar
  60. 60.
    Park, J.Y., Chang, Y., Lee, G.H.: Multi-modal imaging and cancer therapy using lanthanide oxide nanoparticles: current status and perspectives. Curr. Med. Chem. 22, 569–581 (2015).  https://doi.org/10.2174/0929867322666141128162843CrossRefGoogle Scholar
  61. 61.
    Ashton, J.R., Clark, D.P., Moding, E.J., Ghaghada, K., Kirsch, D.G., West, J.L., Badea, C.T.: Dual-energy micro-CT functional imaging of primary lung cancer in mice using gold and iodine nanoparticle contrast agents: a validation study. PLoS One. 9(2), e88129 (2014)CrossRefGoogle Scholar
  62. 62.
    Gao, Y., Hernandez, C., Yuan, H.X., Lilly, J., Kota, P., Zhou, H., Wu, H., Exner, A.A.: Ultrasound molecular imaging of ovarian cancer with CA-125 targeted Nanobubble contrast agents. Nanomedicine. 13(7), 2159–2168 (2017).  https://doi.org/10.1016/j.nano.2017.06.001CrossRefGoogle Scholar
  63. 63.
    Schneider, M.: Characteristics of SonoVuetrade mark. Echocardiography. 16(7,Pt 2), 743–746 (1999)CrossRefGoogle Scholar
  64. 64.
    Pan, F.S., Liu, M., Luo, J., Tian, W.S., Liang, J.Y., Xu, M., Zheng, Y.L., Xie, X.Y.: Transplant renal artery stenosis: evaluation with contrast-enhanced ultrasound. Eur. J. Radiol. 90, 42–49 (2017).  https://doi.org/10.1016/j.ejrad.2017.02.031CrossRefGoogle Scholar
  65. 65.
    Ma, J., Xu, C.S., Gao, F., Chen, M., Li, F., Du, L.F.: Diagnostic and therapeutic research on ultrasound microbubble/nanobubble contrast agents (Review). Mol. Med. Rep. 12(3), 4022–4028 (2015).  https://doi.org/10.3892/mmr.2015.3941CrossRefGoogle Scholar
  66. 66.
    Kodama, T., Tomita, N., Yagishita, Y., Horie, S., Funamoto, K., Hayase, T., Sakamoto, M., Mori, S.: Volumetric and Angiogenic evaluation of antitumor effects with acoustic liposome and high-frequency ultrasound. Cancer Res. 71, 6957 (2011)CrossRefGoogle Scholar
  67. 67.
    Zackrisson, S., van de Ven, S., Gambhir, S.S.: Light in and sound out: emerging translational strategies for photoacoustic imaging. Cancer Res. 74(4), 979–1004 (2014).  https://doi.org/10.1158/0008-5472.CAN-13-2387CrossRefGoogle Scholar
  68. 68.
    Chen, H., Yuan, Z., Wu, C.: Nanoparticle probes for structural and functional photoacoustic molecular tomography. Biomed. Res. Int. 2015(757101), (2015). https://doi.org/10.1155/2015/757101Google Scholar
  69. 69.
    Li, W., Chen, X.: Gold nanoparticles for photoacoustic imaging. Nanomedicine (Lond.). 10(2), 299–320 (2015).  https://doi.org/10.2217/nnm.14.169CrossRefGoogle Scholar
  70. 70.
    Shashkov, E.V., Everts, M., Galanzha, E.I., Zharov, V.P.: Quantum dots as multimodal photoacoustic and photothermal contrast agents. Nano Lett. 8, 3953–3958 (2008).  https://doi.org/10.1021/nl802442xCrossRefGoogle Scholar
  71. 71.
    Pu, K., Mei, J., Jokerst, J.V., Hong, G., Antaris, A.L., Chattopadhyay, N., Shuhendler, A.J., Kurosawa, T., Zhou, Y., Gambhir, S.S., Bao, Z., Rao, J.: Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for In Vivo photoacoustic imaging. Adv. Mater. 27, 5184–5190 (2015).  https://doi.org/10.1002/adma.201502285CrossRefGoogle Scholar
  72. 72.
    Maji, S.K., Sreejith, S., Joseph, J., Lin, M., He, T., Tong, Y., Sun, H., SW-K, Y., Zhao, Y.: Upconversion nanoparticles as a contrast agent for photoacoustic imaging in live mice. Adv. Mater. 26, 5633–5638 (2014).  https://doi.org/10.1002/adma.201400831CrossRefGoogle Scholar
  73. 73.
    Weber, J., Beard, P.C., Bohndiek, S.E.: Contrast agents for molecular photoacoustic imaging. Nat. Methods. 13(8), 639–650 (2016).  https://doi.org/10.1038/nmeth.3929CrossRefGoogle Scholar
  74. 74.
    Hannah, A., Luke, G., Wilson, K., Homan, K.A., Emelianov, S.: Indocyanine green-loaded photoacoustic nanodroplets – dual contrast Nanoconstructs for enhanced photoacoustic and ultrasound imaging. ACS Nano. 8, 250–259 (2014).  https://doi.org/10.1021/nn403527rCrossRefGoogle Scholar
  75. 75.
    Eberhardt, K., Stiebing, C., Matthäus, C., Schmitt, M., Popp, J.: Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update. Expert. Rev. Mol. Diagn. 15, 773–787 (2015).  https://doi.org/10.1586/14737159.2015.1036744CrossRefGoogle Scholar
  76. 76.
    Vo-Dinh, T., Liu, Y., Fales, A.M., Ngo, H., Wang, H.-N., Register, J.K., Yuan, H., Norton, S.J., Griffin, G.D.: SERS nanosensors and nanoreporters: golden opportunities in biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7, 17–33 (2015).  https://doi.org/10.1002/wnan.1283CrossRefGoogle Scholar
  77. 77.
    Wilson, A.J., Willets, K.A.: Surface-enhanced Raman scattering imaging using Noble metal nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 180–189 (2013).  https://doi.org/10.1002/wnan.1208CrossRefGoogle Scholar
  78. 78.
    Harmsen, S., Huang, R., Wall, M.A., Karabeber, H., Samii, J.M., Spaliviero, M., White, J.R., Monette, S., O’Connor, R., Pitter, K.L., Sastra, S.A., Saborowski, M., Holland, E.C., Singer, S., Olive, K.P., Lowe, S.W., Blasberg, R.G., Kircher, M.F.: Surface-enhanced resonance raman scattering Nanostars for high precision Cancer imaging. Sci. Transl. Med. 7, 271ra277 (2015).  https://doi.org/10.1126/scitranslmed.3010633CrossRefGoogle Scholar
  79. 79.
    Jalani, G., Lee, S., Jung, C.W., Jang, H., Choo, J., Lim, D.W.: Controlled biohybrid Nanoprobes with silver nanoparticle clusters for raman imaging. Analyst. 138, 4756–4759 (2013).  https://doi.org/10.1039/c3an00943bCrossRefGoogle Scholar
  80. 80.
    Kircher, M.F., de la Zerda, A., Jokerst, J.V., Zavaleta, C.L., Kempen, P.J., Mittra, E., Pitter, K., Huang, R., Campos, C., Habte, F., Sinclair, R., Brennan, C.W., Mellinghoff, I.K., Holland, E.C., Gambhir, S.S.: A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med. 18(5), 829–834 (2012).  https://doi.org/10.1038/nm.2721CrossRefGoogle Scholar
  81. 81.
    Coughlin, A.J., Ananta, J.S., Deng, N., Larina, I.V., Decuzzi, P., West, J.L.: Gadolinium-conjugated gold nanoshells for multimodal diagnostic imaging and photothermal cancer therapy. Small. 10(3), 556–565 (2014).  https://doi.org/10.1002/smll.201302217CrossRefGoogle Scholar
  82. 82.
    Chen, F., Ellison, P.A., Lewis, C.M., Hong, H., Zhang, Y., Shi, S., Hernandez, R., Meyerand, M.E., Barnhart, T.E., Cai, W.: Chelator-free synthesis of a dual-modality PET/MRI agent. Angew. Chem. Int. Ed. Engl. 52(50), 13319–13323 (2013).  https://doi.org/10.1002/anie.201306306CrossRefGoogle Scholar
  83. 83.
    Li, S., Goins, B., Zhang, L., Bao, A.: Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjug. Chem. 23(6), 1322–1332 (2012).  https://doi.org/10.1021/bc300175dCrossRefGoogle Scholar
  84. 84.
    Lv, G., Guo, W., Zhang, W., Zhang, T., Li, S., Chen, S., Eltahan, A.S., Wang, D., Wang, Y., Zhang, J., Wang, P.C., Chang, J., Liang, X.-J.: Near-infrared emission CuInS/ZnS quantum dots: all-in-one Theranostic nanomedicines with intrinsic fluorescence/photoacoustic imaging for tumor phototherapy. ACS Nano. 10, 9637–9645 (2016).  https://doi.org/10.1021/acsnano.6b05419CrossRefGoogle Scholar
  85. 85.
    Chanda, N., Shukla, R., Zambre, A., Mekapothula, S., Kulkarni, R.R., Katti, K., Bhattacharyya, K., Fent, G.M., Casteel, S.W., Boote, E.J., Viator, J.A., Upendran, A., Kannan, R., Katti, K.V.: An effective strategy for the synthesis of biocompatible gold nanoparticles using cinnamon phytochemicals for phantom CT imaging and photoacoustic detection of cancerous cells. Pharm. Res. 28, 279–291 (2011).  https://doi.org/10.1007/s11095-010-0276-6CrossRefGoogle Scholar
  86. 86.
    Shin, T.-H., Choi, Y., Kim, S., Cheon, J.: Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem. Soc. Rev. 44, 4501–4516 (2015).  https://doi.org/10.1039/c4cs00345dCrossRefGoogle Scholar
  87. 87.
    Li, S., Goins, B., Zhang, L., Bao, A.: A novel multifunctional Theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent and nuclear imaging. Bioconjug. Chem. 23, 1322–1332 (2012).  https://doi.org/10.1021/bc300175dCrossRefGoogle Scholar
  88. 88.
    Miyata, S., Kawabata, S., Hiramatsu, R., Doi, A., Ikeda, N., Yamashita, T., Kuroiwa, T., Kasaoka, S., Maruyama, K., Miyatake, S.: Computed tomography imaging of transferrin targeting liposomes encapsulating both boron and iodine contrast agents by convection-enhanced delivery to F98 rat glioma for boron neutron capture therapy. Neurosurgery. 68(5), 1380–1387.; discussion 1387 (2011). https://doi.org/10.1227/NEU.0b013e31820b52aaCrossRefGoogle Scholar
  89. 89.
    Phillips, E., Penate-Medina, O., Zanzonico, P.B., Carvajal, R.D., Mohan, P., Ye, Y., Humm, J., Gonen, M., Kalaigian, H., Schoder, H., Strauss, H.W., Larson, S.M., Wiesner, U., Bradbury, M.S.: Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 6(260), 260ra149 (2014).  https://doi.org/10.1126/scitranslmed.3009524CrossRefGoogle Scholar
  90. 90.
    Morris, R.T., Joyrich, R.N., Naumann, R.W., Shah, N.P., Maurer, A.H., Strauss, H.W., Uszler, J.M., Symanowski, J.T., Ellis, P.R., Harb, W.A.: Phase II study of treatment of advanced ovarian Cancer with folate-receptor-targeted therapeutic (Vintafolide) and companion SPECT-based imaging agent (99mTc-etarfolatide). Ann. Oncol. 25, 852–858 (2014).  https://doi.org/10.1093/annonc/mdu024CrossRefGoogle Scholar
  91. 91.
    Deng, W., Goldys, E.M.: Chemical sensing with nanoparticles as optical reporters: from noble metal nanoparticles to quantum dots and upconverting nanoparticles. Analyst. 139(21), 5321–5334 (2014).  https://doi.org/10.1039/c4an01272kCrossRefGoogle Scholar
  92. 92.
    Chen, Q., Liu, X., Zeng, J., Cheng, Z., Liu, Z.: Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors. Biomaterials. 98, 23–30 (2016).  https://doi.org/10.1016/j.biomaterials.2016.04.041CrossRefGoogle Scholar
  93. 93.
    Gurka, M.K., Pender, D., Chuong, P., Fouts, B.L., Sobelov, A., McNally, M.W., Mezera, M., Woo, S.Y., McNally, L.R.: Identification of pancreatic tumors in vivo with ligand-targeted, pH responsive mesoporous silica nanoparticles by multispectral optoacoustic tomography. J. Control. Release. 231, 60–67 (2016).  https://doi.org/10.1016/j.jconrel.2015.12.055CrossRefGoogle Scholar
  94. 94.
    Mi, P., Kokuryo, D., Cabral, H., Wu, H., Terada, Y., Saga, T., Aoki, I., Nishiyama, N., Kataoka, K.: A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nat. Nanotechnol. 11(8), 724–730 (2016).  https://doi.org/10.1038/nnano.2016.72CrossRefGoogle Scholar
  95. 95.
    Ye, D., Shuhendler, A.J., Pandit, P., Brewer, K.D., Tee, S.S., Cui, L., Tikhomirov, G., Rutt, B., Rao, J.: Caspase-responsive smart gadolinium-based contrast agent for magnetic resonance imaging of drug-induced apoptosis. Chem. Sci. 4(10), 3845–3852 (2014).  https://doi.org/10.1039/C4SC01392ACrossRefGoogle Scholar
  96. 96.
    Jiang, J., Zhao, Z., Hai, Z., Wang, H., Liang, G.: Intracellular proteolytic disassembly of self-quenched near-infrared nanoparticles turning fluorescence on for tumor-targeted imaging. Anal. Chem. 89(18), 9625–9628 (2017)CrossRefGoogle Scholar
  97. 97.
    Ding, D., Kwok, R.T., Yuan, Y., Feng, G., Tang, B.Z., Liu, B.: A fluorescent light-up nanoparticle probe with aggregation-induced emission characteristics and tumor-acidity responsiveness for targeted imaging and selective suppression of cancer cells. Materials Horizons. 2(1), 100–105 (2015)CrossRefGoogle Scholar
  98. 98.
    Yuan, Y., Feng, G., Qin, W., Tang, B.Z., Liu, B.: Targeted and image-guided photodynamic cancer therapy based on organic nanoparticles with aggregation-induced emission characteristics. Chem. Commun. 50(63), 8757–8760 (2014)CrossRefGoogle Scholar
  99. 99.
    Kumar, S., Ahlawat, W., Kumar, R., Dilbaghi, N.: Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens. Bioelectron. 70, 498–503 (2015).  https://doi.org/10.1016/j.bios.2015.03.062CrossRefGoogle Scholar
  100. 100.
    Tiwari, J.N., Vij, V., Kemp, K.C., Kim, K.S.: Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano. 10(1), 46–80 (2016).  https://doi.org/10.1021/acsnano.5b05690CrossRefGoogle Scholar
  101. 101.
    Yang, C., Denno, M.E., Pyakurel, P., Venton, B.J.: Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review. Anal. Chim. Acta. 887, 17–37 (2015).  https://doi.org/10.1016/j.aca.2015.05.049CrossRefGoogle Scholar
  102. 102.
    Nam, J.M., Thaxton, C.S., Mirkin, C.A.: Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 301(5641), 1884–1886 (2003).  https://doi.org/10.1126/science.1088755CrossRefGoogle Scholar
  103. 103.
    Bi, S., Hao, S., Li, L., Zhang, S.: Bio-bar-code dendrimer-like DNA as signal amplifier for cancerous cells assay using ruthenium nanoparticle-based ultrasensitive chemiluminescence detection. Chem. Commun. (Camb.). 46(33), 6093–6095 (2010).  https://doi.org/10.1039/c0cc01409eCrossRefGoogle Scholar
  104. 104.
    Zhang, K., Lv, S., Lin, Z., Li, M., Tang, D.: Bio-bar-code-based photoelectrochemical immunoassay for sensitive detection of prostate-specific antigen using rolling circle amplification and enzymatic biocatalytic precipitation. Biosens. Bioelectron. 101, 159–166 (2018).  https://doi.org/10.1016/j.bios.2017.10.031CrossRefGoogle Scholar
  105. 105.
    Gdowski, A., Ranjan, A.P., Mukerjee, A., Vishwanatha, J.K.: Nanobiosensors: role in cancer detection and diagnosis. Adv. Exp. Med. Biol. 807, 33–58 (2014).  https://doi.org/10.1007/978-81-322-1777-0_4CrossRefGoogle Scholar
  106. 106.
    SalmanOgli, A.: Nanobio applications of quantum dots in cancer: imaging, sensing, and targeting. Cancer Nanotechnol. 2, 1–6), 1–19 (2011).  https://doi.org/10.1007/s12645-011-0015-7CrossRefGoogle Scholar
  107. 107.
    Tripathi, S.K., Kaur, G., Khurana, R.K., Kapoor, S., Singh, B.: Quantum dots and their potential role in Cancer Theranostics. Crit. Rev. Ther. Drug Carrier Syst. 32, 461–502 (2015)CrossRefGoogle Scholar
  108. 108.
    Rzigalinski, B.A., Strobl, J.S.: Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots. Toxicol. Appl. Pharmacol. 238(3), 280–288 (2009).  https://doi.org/10.1016/j.taap.2009.04.010CrossRefGoogle Scholar
  109. 109.
    Xu, G., Lin, G., Lin, S., Wu, N., Deng, Y., Feng, G., Chen, Q., Qu, J., Chen, D., Chen, S., Niu, H., Mei, S., Yong, K.T., Wang, X.: The reproductive toxicity of CdSe/ZnS quantum dots on the in vivo ovarian function and in vitro fertilization. Sci. Rep. 6, 37677 (2016).  https://doi.org/10.1038/srep37677CrossRefGoogle Scholar
  110. 110.
    Xu, G., Zeng, S., Zhang, B., Swihart, M.T., Yong, K.T., Prasad, P.N.: New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem. Rev. 116(19), 12234–12327 (2016).  https://doi.org/10.1021/acs.chemrev.6b00290CrossRefGoogle Scholar
  111. 111.
    Das, P., Krull, U.J.: Detection of a cancer biomarker protein on modified cellulose paper by fluorescence using aptamer-linked quantum dots. Analyst. 142(17), 3132–3135 (2017).  https://doi.org/10.1039/c7an00624aCrossRefGoogle Scholar
  112. 112.
    Zhang, H., Liu, L., Fu, X., Zhu, Z.: Microfluidic beads-based immunosensor for sensitive detection of cancer biomarker proteins using multienzyme-nanoparticle amplification and quantum dots labels. Biosens. Bioelectron. 42, 23–30 (2013).  https://doi.org/10.1016/j.bios.2012.10.076CrossRefGoogle Scholar
  113. 113.
    Li, Z., Wang, Y., Wang, J., Tang, Z., Pounds, J.G., Lin, Y.: Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal. Chem. 82(16), 7008–7014 (2010).  https://doi.org/10.1021/ac101405aCrossRefGoogle Scholar
  114. 114.
    McHugh, K.J., Jing, L., Behrens, A.M., Jayawardena, S., Tang, W., Gao, M., Langer, R., Jaklenec, A.: Biocompatible semiconductor quantum dots as Cancer imaging agents. Adv. Mater. 30(18), e1706356 (2018).  https://doi.org/10.1002/adma.201706356CrossRefGoogle Scholar
  115. 115.
    Kairdolf, B.A., Smith, A.M., Stokes, T.H., Wang, M.D., Young, A.N., Nie, S.: Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem (Palo Alto, Calif). 6, 143–162 (2013).  https://doi.org/10.1146/annurev-anchem-060908-155136CrossRefGoogle Scholar
  116. 116.
    Robe, A., Pic, E., Lassalle, H.P., Bezdetnaya, L., Guillemin, F., Marchal, F.: Quantum dots in axillary lymph node mapping: biodistribution study in healthy mice. BMC Cancer. 8, 111 (2008).  https://doi.org/10.1186/1471-2407-8-111CrossRefGoogle Scholar
  117. 117.
    Glazer, E.S., Curley, S.A.: Radiofrequency field-induced thermal cytotoxicity in cancer cells treated with fluorescent nanoparticles. Cancer. 116(13), 3285–3293 (2010).  https://doi.org/10.1002/cncr.25135CrossRefGoogle Scholar
  118. 118.
    Gonda, K., Miyashita, M., Higuchi, H., Tada, H., Watanabe, T.M., Watanabe, M., Ishida, T., Ohuchi, N.: Predictive diagnosis of the risk of breast cancer recurrence after surgery by single-particle quantum dot imaging. Sci. Rep. 5, 14322 (2015).  https://doi.org/10.1038/srep14322CrossRefGoogle Scholar
  119. 119.
    Xiang, Q.M., Wang, L.W., Yuan, J.P., Chen, J.M., Yang, F., Li, Y.: Quantum dot-based multispectral fluorescent imaging to quantitatively study co-expressions of Ki67 and HER2 in breast cancer. Exp. Mol. Pathol. 99(1), 133–138 (2015).  https://doi.org/10.1016/j.yexmp.2015.06.013CrossRefGoogle Scholar
  120. 120.
    Peng, C.W., Liu, X.L., Chen, C., Liu, X., Yang, X.Q., Pang, D.W., Zhu, X.B., Li, Y.: Patterns of cancer invasion revealed by QDs-based quantitative multiplexed imaging of tumor microenvironment. Biomaterials. 32(11), 2907–2917 (2011).  https://doi.org/10.1016/j.biomaterials.2010.12.053CrossRefGoogle Scholar
  121. 121.
    Fang, M., Peng, C.W., Yuan, J.P., Zhang, Z.L., Pang, D.W., Li, Y.: Coevolution of the tumor microenvironment revealed by quantum dot-based multiplexed imaging of hepatocellular carcinoma. Future Oncol. 9(7), 1029–1037 (2013).  https://doi.org/10.2217/fon.13.63CrossRefGoogle Scholar
  122. 122.
    Schroeder, K.L., Goreham, R.V., Nann, T.: Graphene quantum dots for Theranostics and bioimaging. Pharm. Res. 33(10), 2337–2357 (2016).  https://doi.org/10.1007/s11095-016-1937-xCrossRefGoogle Scholar
  123. 123.
    Tian, G., Zhang, X., Gu, Z., Zhao, Y.: Recent advances in Upconversion nanoparticles-based multifunctional nanocomposites for combined Cancer therapy. Adv. Mater. 27, 7692–7712 (2015).  https://doi.org/10.1002/adma.201503280CrossRefGoogle Scholar
  124. 124.
    Wang, C., Cheng, L., Liu, Z.: Upconversion nanoparticles for photodynamic therapy and other Cancer therapeutics. Theranostics. 3, 317–330 (2013).  https://doi.org/10.7150/thno.5284CrossRefGoogle Scholar
  125. 125.
    Liu, X., Que, I., Kong, X., Zhang, Y., Tu, L., Chang, Y., Wang, T.T., Chan, A., Lowik, C.W.G.M., Zhang, H.: In Vivo 808 nm image-guided photodynamic therapy based on an Upconversion Theranostic Nanoplatform. Nanoscale. 7, 14914–14923 (2015).  https://doi.org/10.1039/c5nr03690aCrossRefGoogle Scholar
  126. 126.
    Yong, Y., Cheng, X., Bao, T., Zu, M., Yan, L., Yin, W., Ge, C., Wang, D., Gu, Z., Zhao, Y.: Tungsten sulfide quantum dots as multifunctional Nanotheranostics for In Vivo dual-modal image-guided Photothermal/radiotherapy synergistic therapy. ACS Nano. 9, 12451–12463 (2015).  https://doi.org/10.1021/acsnano.5b05825CrossRefGoogle Scholar
  127. 127.
    Thakur, M., Mewada, A., Pandey, S., Bhori, M., Singh, K., Sharon, M., Sharon, M.: Milk-derived multi-fluorescent graphene quantum dot-based Cancer Theranostic system. Mater. Sci. Eng. C. 67, 468–477 (2016).  https://doi.org/10.1016/j.msec.2016.05.007CrossRefGoogle Scholar
  128. 128.
    Park, Y.I., Lee, K.T., Suh, Y.D., Hyeon, T.: Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal In Vivo imaging. Chem. Soc. Rev. 44, 1302–1317 (2015).  https://doi.org/10.1039/c4cs00173gCrossRefGoogle Scholar
  129. 129.
    Rosenthal, E.L., Warram, J.M., Bland, K.I., Zinn, K.R.: The status of contemporary image-guided modalities in oncologic surgery. Ann. Surg. 261, 46–55 (2015).  https://doi.org/10.1097/SLA.0000000000000622CrossRefGoogle Scholar
  130. 130.
    Hill, T.K., Mohs, A.M.: Image-guided tumor surgery: will there be a role for fluorescent nanoparticles? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 498–511 (2016).  https://doi.org/10.1002/wnan.1381CrossRefGoogle Scholar
  131. 131.
    Huang, K., Luo, D., Huang, M., Long, M., Peng, X., Li, H.: Protection of parathyroid function using carbon nanoparticles during thyroid surgery. Otolaryngology--head and neck surgery : official journal of American Academy of. Otolaryngol. Head Neck Surg. 149, 845–850 (2013).  https://doi.org/10.1177/0194599813509779CrossRefGoogle Scholar
  132. 132.
    Schaafsma, B.E., Verbeek, F.P., Rietbergen, D.D., van der Hiel, B., van der Vorst, J.R., Liefers, G.J., Frangioni, J.V., van de Velde, C.J., van Leeuwen, F.W., Vahrmeijer, A.L.: Clinical trial of combined radio- and fluorescence-guided sentinel lymph node biopsy in breast Cancer. Br. J. Surg. 100, 1037–1044 (2013).  https://doi.org/10.1002/bjs.9159CrossRefGoogle Scholar
  133. 133.
    Li, C.: A targeted approach to Cancer imaging and therapy. Nat. Mater. 13, 110–115 (2014).  https://doi.org/10.1038/nmat3877CrossRefGoogle Scholar
  134. 134.
    Medical-Devices. List of cleared or approved companion diagnostic devices (In Vitro and imaging tools). (2018). https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm301431.htmGoogle Scholar
  135. 135.
    Agarwal, A., Ressler, D., Snyder, G.: The current and future state of companion diagnostics. Pharmgenomics Pers. Med. 8, 99–110 (2015).  https://doi.org/10.2147/PGPM.S49493Google Scholar
  136. 136.
    Day, C.P., Merlino, G., Van Dyke, T.: Preclinical mouse cancer models: a maze of opportunities and challenges. Cell. 163(1), 39–53 (2015).  https://doi.org/10.1016/j.cell.2015.08.068CrossRefGoogle Scholar
  137. 137.
    Landgraf, M., McGovern, J.A., Friedl, P., Hutmacher, D.W.: Rational Design of Mouse Models for Cancer research. Trends Biotechnol. 36, 242 (2018)CrossRefGoogle Scholar
  138. 138.
    Zamboni, W.C., Torchilin, V., Patri, A.K., Hrkach, J., Stern, S., Lee, R., Nel, A., Panaro, N.J., Grodzinski, P.: Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin. Cancer Res. 18(12), 3229–3241 (2012).  https://doi.org/10.1158/1078-0432.CCR-11-2938CrossRefGoogle Scholar
  139. 139.
    Wolfram, J., Zhu, M., Yang, Y., Shen, J., Gentile, E., Paolino, D., Fresta, M., Nie, G., Chen, C., Shen, H., Ferrari, M., Zhao, Y.: Safety of nanoparticles in medicine. Curr. Drug Targets. 16, 1671–1681 (2015)CrossRefGoogle Scholar
  140. 140.
    Wang, Y.-X.J.: Current status of superparamagnetic Iron oxide contrast agents for liver magnetic resonance imaging. World J. Gastroenterol. 21, 13400–13402 (2015).  https://doi.org/10.3748/wjg.v21.i47.13400CrossRefGoogle Scholar
  141. 141.
    Wicki, A., Ritschard, R., Loesch, U., Deuster, S., Rochlitz, C., Mamot, C.: Large-scale manufacturing of GMP-compliant anti-EGFR targeted Nanocarriers: production of doxorubicin-loaded anti-EGFR-Immunoliposomes for a first-in-man clinical trial. Int. J. Pharm. 484, 8–15 (2015).  https://doi.org/10.1016/j.ijpharm.2015.02.034CrossRefGoogle Scholar
  142. 142.
    Beyer, S., Xie, L., Gräfe, S., Vogel, V., Dietrich, K., Wiehe, A., Albrecht, V., Mäntele, W., Wacker, M.G.: Bridging laboratory and large scale production: preparation and In Vitro-evaluation of photosensitizer-loaded Nanocarrier devices for targeted drug delivery. Pharm. Res. 32, 1714–1726 (2015).  https://doi.org/10.1007/s11095-014-1569-yCrossRefGoogle Scholar
  143. 143.
    Duong, A.D., Ruan, G., Mahajan, K., Winter, J.O., Wyslouzil, B.E.: Scalable, Semicontinuous production of micelles encapsulating nanoparticles via electrospray. Langmuir. 30, 3939–3948 (2014).  https://doi.org/10.1021/la404679rCrossRefGoogle Scholar
  144. 144.
    Cho, E.J., Holback, H., Liu, K.C., Abouelmagd, S.A., Park, J., Yeo, Y.: Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol. Pharm. 10, 2093–2110 (2013).  https://doi.org/10.1021/mp300697hCrossRefGoogle Scholar
  145. 145.
    Crist, R.M., Grossman, J.H., Patri, A.K., Stern, S.T., Dobrovolskaia, M.A., Adiseshaiah, P.P., Clogston, J.D., McNeil, S.E.: Common pitfalls in nanotechnology: lessons Learned from NCI’s nanotechnology characterization laboratory. Integr. Biol. 5, 66–73 (2013).  https://doi.org/10.1039/c2ib20117hCrossRefGoogle Scholar
  146. 146.
    Adiseshaiah, P.P., Hall, J.B., McNeil, S.E.: Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 99–112 (2010).  https://doi.org/10.1002/wnan.66CrossRefGoogle Scholar
  147. 147.
    Chapman, S., Dobrovolskaia, M., Farahani, K., Goodwin, A., Joshi, A., Lee, H., Meade, T., Pomper, M., Ptak, K., Rao, J., Singh, R., Sridhar, S., Stern, S., Wang, A., Weaver, J.B., Woloschak, G., Yang, L.: Nanoparticles for cancer imaging: the good, the bad, and the promise. Nano Today. 8(5), 454–460 (2013).  https://doi.org/10.1016/j.nantod.2013.06.001CrossRefGoogle Scholar
  148. 148.
    Love, D.T., Barrett, T.J., White, M.Y., Cordwell, S.J., Davies, M.J., Hawkins, C.L.: Cellular targets of the myeloperoxidase-derived oxidant hypothiocyanous acid (HOSCN) and its role in the inhibition of glycolysis in macrophages. Free Radic. Biol. Med. 94, 88–98 (2016).  https://doi.org/10.1016/j.freeradbiomed.2016.02.016CrossRefGoogle Scholar
  149. 149.
    Bailie, G.R.: Comparison of rates of reported adverse events associated with i.v. iron products in the United States. Am. J. Health Syst. Pharm. 69(4), 310–320 (2012).  https://doi.org/10.2146/ajhp110262CrossRefGoogle Scholar
  150. 150.
    Lu, M., Cohen, M.H., Rieves, D., Pazdur, R.: FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am. J. Hematol. 85(5), 315–319 (2010).  https://doi.org/10.1002/ajh.21656Google Scholar
  151. 151.
    Drug-Safety-Communications. FDA strengthens warnings and changes prescribing instructions to decrease the risk of serious allergic reactions with anemia drug Feraheme (ferumoxytol). (2015). https://www.fda.gov/downloads/Drugs/DrugSafety/UCM440336.pdf2015
  152. 152.
    Rajan, T.V.: The Gell-coombs classification of hypersensitivity reactions: a re-interpretation. Trends Immunol. 24(7), 376–379 (2003)CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.National Cancer Institute, National Institutes of HealthRockvilleUSA

Personalised recommendations